Comparison Lift and Drag of Airfoil NACA 1408 Standard and Modification Using Computational Fluid Dynamic
##plugins.themes.academic_pro.article.main##
Abstract
An airfoil is a geometry shape of an aircraft wing designed to produce high lift force and low drag forces. Study on the air flow and pressure around of the airfoil was important step to analysis lift force and drag force. Factor affecting the lift force and drag force airfoil are the geometry and dimensions of the airfoil. This study to discus about the modification airfoil NACA 1408 was performed by adding round tip in leading edge to obtain simulate air flow by varying the angle of attack. The result showed that coefficient of lift (Cl) and coefficient of drag (Cd) was calculated from the simulations, data the highest Cl and Cd were 0.00277 and 0.00025 for the standard airfoil and for modification airfoil were 0.00343 and 0.00064. Based on the test result, the modified airfoil can produce better lift force than the standard shapes for test speed of 20 m/s.
Airfoil merupakan bentuk geometri sayap pesawat terbang yang dirancang untuk menghasilkan lift force tinggi dan drag force rendah. Studi tentang aliran udara dan tekanan di sekitar airfoil adalah langkah penting untuk menganalisis lift force dan drag force. Faktor yang mempengaruhi lift force dan drag force airfoil adalah geometri dan dimensi airfoil tersebut. Penelitian ini membahas tentang modifikasi dilakukan pada airfoil NACA 1408 dengan menambahkan ujung bulat pada leading edge dan mendapatkan simulasi aliran udara dengan memvariasikan angle of attack. Hasil penelitian menunjukkan bahwa coefficient of lift dan coefficient of drag dihitung dari simulasi, data coefficient of lift dan coefficient of drag tertinggi adalah 0.00277 dan 0.00025 untuk airfoil standar dan untuk airfoil modifikasi adalah 0.00343 dan 0.00064. Berdasarkan hasil pengujian, airfoil modifikasi dapat menghasilkan lift force lebih baik daripada bentuk standar untuk kecepatan uji 20 m/s.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Usin Usin, Yolli Fernanda, Arwizet Karudin, Andre Kurniawan (2022)References
[2] K. Hidayat, A. Rizaldi, A. Septiyana, M. L. Ramadiansyah, and R. A. Ramadhan, “ANALISIS PEMILIHAN AIRFOIL PESAWAT TERBANG TANPA AWAK LSU-05 NG DENGAN MENGGUNAKAN ANALYTICAL HIERARCHY PROCESS ( AIRFOIL SELECTION ANALYSIS OF LSU-05 NG UNMANNED AERIAL VEHICLE USING ANALYTICAL HIERARCHY PROCESS ),” J. Teknol. Dirgant., vol. 17, no. 2, pp. 141–156, 2019.
[3] S. Anand, A. Pandey, A. Sharma, and C. R. Kini, “Effect of trailing edge roundness on FX 63-137 and Selig S1223 Airfoil,” ARPN J. Eng. Appl. Sci., vol. 12, no. 19, pp. 5494–5499, 2017.
[4] D. Herdiana and A. S. Rasyadi, “Pemilihan Profil Sayap Pesawat LSU-02 NGLD dengan menggunakan Metode Panel,” Iptek Penerbangan dan Antariksa Prog. Litbangyasa Roket, Satelit dan Penerbangan, no. Penguin C, pp. 98–105, 2018.
[5] M. F. Hidayat, “Analisis Aerodinamika Airfoil NACA 0021 Dengan Ansys Fluent,” Univ. 17 Agustus 1945 Jakarta, vol. 10, no. 2, pp. 83–92, 2016.
[6] J. Singh, J. Singh, A. Singh, A. Rana, and A. Dahiya, “Study of NACA 4412 and Selig 1223 airfoils through computational fluid dynamics,” Int. J. Mech. Eng., vol. 2, no. 6, pp. 17–21, 2015, doi: 10.14445/23488360/ijme-v2i6p104.
[7] S. J. Zaloga, Unmanned Aerial Vehicles: Robotic Air Warfare 1917-2007. Osprey, 2008.
[8] İ. Şahin and A. Acir, “Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil,” Int. J. Mater. Mech. Manuf., vol. 3, no. 1, pp. 22–25, 2015, doi: 10.7763/ijmmm.2015.v3.159.
[9] N. M. Triet, N. N. Viet, and P. M. Thang, “Aerodynamic Analysis of Aircraft Wing,” VNU J. Sci. Math. – Phys., vol. 31, no. 2, pp. 68–75, 2015.
[10] S. M. A. Aftab and K. A. Ahmad, “NACA 4415 wing modification using tubercles - A numerical analysis,” Appl. Mech. Mater., vol. 629, pp. 30–35, 2014, doi: 10.4028/www.scientific.net/AMM.629.30.
[11] J. C. Kewas, M. Ali, P. T. D. Rompas, and U. N. Manado, “Analisis Gaya Angkat Akibat Perubahan Kecepatan Aliran Udara Dan Sudut Serang Pada Airfoil Naca 0015 Dalam Wind Tunnel Sub Sonic,” J. Sains dan Teknol. Univ. Negeri Manad., vol. 3, no. April, 2020.
[12] C. Dole, E, J. Lewis, E, J. Badick, R, and B. Johnson, A, Flight Theory And Aerodynamics : A Practical Guide for Operational Safety, Thirth Edi. Canada: University of America, 2017.
[13] D. Al Faris, M. R., Priangkoso, T., & Darmanto, “VISUALISASI PENGARUH SUDUT SERANG DAN KECEPATAN ALIRAN UDARA TERHADAP STALL AIRFOIL NACA 2415 DAN NACA 4424,” Maj. Ilm. MOMENTUM, 2020.
[14] W. Ramadika and R. Permatasari, “Pengaruh Panjang Chord Terhadap Nilai Koefisien Gaya Angkat (Cl) Dan Koefisien Gaya Hambat (Cd) Pada Variasi Sudut Serang Hydrofoil Naca 0018 …,” Pros. Semin. …, no. September, 2018, [Online]. Available: https://trijurnal.lemlit.trisakti.ac.id/semnas/article/view/3545.
[15] N. A. Putra, “‘ ANALISIS AERODINAMIKA AIRFOIL PADA PESAWAT UNMANNED AERIAL VEHICLE ( UAV ) TAIL TWIN BOOM DENGAN TIPE NACA 2412 DAN NACA 4415 MENGGUNAKAN SOFTWARE BERBASIS COMPUTATIONAL FLUID DYNAMIC ,’” p. 2412, 2021.
[16] C. J. Ejeh, G. P. Akhabue, E. A. Boah, and K. K. Tandoh, “Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics,” Results Eng., vol. 4, no. September, p. 100037, 2019, doi: 10.1016/j.rineng.2019.100037.
[17] M. D. Ardany, P. Pandiangan, and M. Hasan, “Lift Force of Airfoil (NACA 0012, NACA 4612, NACA 6612) With Variation of Angle of Attack and Camber: Computational Fluid Dynamics Study,” Comput. Exp. Res. Mater. Renew. Energy, vol. 4, no. 2, p. 80, 2021, doi: 10.19184/cerimre.v4i2.28372.
[18] T. Sri, N. Asih, and S. B. Waluya, “Perbandingan Finite Difference Method dan Finite Element Method dalam Mencari Solusi Persamaan Diferensial Parsial,” Pros. Semin. Nas. Mat., vol. 1, pp. 885–888, 2018.
[19] A. Jameson and M. Fatica, “Using computational fluid dynamics for aerodynamics-a critical assessment,” Stanford Univ., no. January, pp. 1–24, 2015.
[20] A. Karudin, “Analisis Numerik Pengaruh Sudut Sudu Pengarah Difuser Jet Swirling dan Grille Terhadap Distribusi Sifat-Sifat Termodinamika Udara dalam Ruang Terkondisi,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 20, no. 2, pp. 117–128, 2020, doi: 10.24036/invotek.v20i2.789.
[21] P. Paturu, G. Mallela, S. J. Juliyana, A. D. Sadhana, and M. Komaleswarao, “Numerical analysis of flow over naca0012 at fixed mach number, using computational fluid dynamics,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 7, no. 6, pp. 213–222, 2017, doi: 10.24247/ijmperddec201723.