Study of Power Flow and Harmonics when Integrating Photovoltaic into Microgrid
##plugins.themes.academic_pro.article.main##
Abstract
Power system stability issues and the lack of studies of the impact of relevant renewable energy networks are factors hindering the use of large-scale integration of renewable energy sources. This study focuses on examining the impact of photovoltaic system integration on the power stability of the power grid. The integration of this photovoltaic involves the analysis of the static and dynamic state of the electrical network. Load flow simulation is performed to assess the performance of static conditions of the power grid. Furthermore, dynamic analysis is carried out by applying 3-phase short circuits at critical points of the network and observing how harmonic and stability in the system. The simulation was carried out using the ETAP 19.0. Simulations of existing conditions and after penetration of the photovoltaic system showed the buses had THDv and THDI values below the permissible standards, respectively. In addition, the existing power flow simulation experiences a voltage drop from the nominal voltage.
Masalah stabilitas sistem tenaga dan kurangnya studi akan dampak dari jaringan energi terbarukan yang relevan merupakan faktor yang menghambat penggunaan integrasi skala besar dari sumber energi terbarukan. Penelitian ini fokus mengkaji dampak integrasi sistem fotovoltaik pada stabilitas daya jaringan listrik. Integrasi sistem fotovoltaik ini melibatkan analisis keadaan statis dan dinamis dari jaringan listrik. Simulasi aliran beban dilakukan untuk menilai kinerja kondisi statis dari jaringan listrik. Selanjutnya, analisis dinamik dilakukan dengan menerapkan hubung singkat 3 fasa pada titik-titik kritis jaringan dan mengamati bagaimana harmonisa dan stabilitas pada sistem. Simulasi dilakukan dengan menggunakan perangkat lunak ETAP 19.0. Simulasi kondisi sebelum dan setelah penetrasi sistem fotovoltaik menunjukkan bus masing-masing memiliki nilai THDv dan THDI dibawah standar yang diperbolehkan. Selain itu, simulasi aliran daya kondisi sebelum integrasi mengalami jatuh tegangan dari tegangan nominal.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Robi Kurniawan, Muhammad Daud, Arnawan Hasibuan (2022)References
[2] X. Gao, L. Xia, L. Lu, and Y. Li, “Analysis of Hong Kong’s wind energy: power potential, development constraints, and experiences from other countries for local wind energy promotion strategies,” Sustainability, vol. 11, no. 3, p. 924, 2019.
[3] V. Azkia Dihni, “10 Negara Pengguna Tenaga Angin dan Surya Terbesar,” Databooks.katadata.co.id, 2022. [Online]. Available: https://databoks.katadata.co.id/datapublish/2022/05/12/10-negara-pengguna-tenaga-angin-dan-surya-terbesar. [Accessed: 08-Jul-2022].
[4] Humas EBTKE, “Indonesia Kaya Energi Surya, Pemanfaatan Listrik Tenaga Surya oleh Masyarakat Tidak Boleh Ditunda,” ebtke.esdm.go.id, 2021. [Online]. Available: https://ebtke.esdm.go.id/post/2021/09/02/2952/indonesia.kaya.energi.surya.pemanfaatan.listrik.tenaga.surya.oleh.masyarakat.tidak.boleh.ditunda.
[5] H. Zsiborács et al., “Intermittent renewable energy sources: The role of energy storage in the european power system of 2040,” Electronics, vol. 8, no. 7, p. 729, 2019.
[6] Y.-S. Kim, E.-S. Kim, and S.-I. Moon, “Frequency and voltage control strategy of standalone microgrids with high penetration of intermittent renewable generation systems,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 718–728, 2015.
[7] S. Mokeke and L. Z. Thamae, “The impact of intermittent renewable energy generators on Lesotho national electricity grid,” Electr. Power Syst. Res., vol. 196, p. 107196, 2021.
[8] P. Du, R. Baldick, and A. Tuohy, “Integration of large-scale renewable energy into bulk power systems,” Power Electron. Power Syst., 2017.
[9] L. Bird and M. Milligan, “WREF 2012: Lessons from large-scale renewable energy integration studies,” World Renew. Energy Forum, WREF 2012, Incl. World Renew. Energy Congr. XII Color. Renew. Energy Soc. Annu. Conf., vol. 3, no. June, pp. 2400–2406, 2012.
[10] E. Munkhchuluun, L. Meegahapola, and A. Vahidnia, “Impact on rotor angle stability with high solar-PV generation in power networks,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1–6.
[11] C. Liu, Z. Chen, C. L. Bak, Z. Liu, P. Lund, and P. Rønne-Hansen, “Transient stability assessment of power system with large amount of wind power penetration: The Danish case study,” in 2012 10th International Power & Energy Conference (IPEC), 2012, pp. 461–467.
[12] C. Bing et al., “Power quality measurement and comparison between two wind farms equipped with FSIG+ PMSG and DFIG,” in 2010 International Conference on Power System Technology, 2010, pp. 1–7.
[13] S. Hong and M. Zuercher-Martinson, “Harmonics and noise in photovoltaic (pv) inverter and the mitigation strategies,” Solectria Renewables, Lawrence, MA, USA, Tech. Rep, 2010.
[14] M. Patsalides, A. Stavrou, G. Makrides, V. Efthimiou, and G. E. Georghiou, “Harmonic Response of Distributed Grid Connected PhotoVotaic Systems,” http/www. pvtechnology. ucy. ac/pvtechnology/publication/DEMSEE08_pq. Pap. pdf, 2008.
[15] I. Abadi, O. Penangsang, and R. L. Praseto, “A study of harmonics in PV-wind turbine micro-grid system,” Int. J. Appl. Eng. Res., vol. 10, no. 9, pp. 23621–23629, 2015.
[16] C. Francisco, Harmonics, power systems, and smart grids. CRC Press, 2017.
[17] E. M. Suryanti, R. Rosmaliati, and I. B. F. Citarsa, “Analisis Unjuk Kerja Sistem Fotovoltaik On-Grid Pada Pembangkit Listrik Tenaga Surya (PLTS) Gili Trawangan,” Dielektrika, vol. 1, no. 2, pp. 82–95, 2017.
[18] T. Zulfadli and A. Mulkan, “Studi kelayakan energi matahari--angin (hybrid) sebagai sumber daya pompa air untuk sistem pengairan di kawasan Aceh Besar,” J. Polimesin, vol. 17, no. 2, pp. 61–66, 2019.
[19] A. A. F. Husain, W. Z. W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, “A review of transparent solar photovoltaic technologies,” Renew. Sustain. energy Rev., vol. 94, pp. 779–791, 2018.
[20] A. Julisman, I. D. Sara, and R. H. Siregar, “Prototipe Pemanfaatan Panel Surya Sebagai Sumber Energi Pada Sistem Otomasi Stadion Bola,” J. Komputer, Inf. Teknol. dan Elektro, vol. 2, no. 1, 2017.
[21] A. Najmurrokhman, Z. Fakhri, and M. Reza, “Pengembangan Pembangkit Listrik Tersebar Energi Baru Terbarukan dan Konversi Energi,” 2017.
[22] R. Muhamad, Stability analysis of transmission systems with high penetration of distributed generation. 2006.
[23] A. Molina-Garcia, A. D. Hansen, E. Muljadi, V. Gevorgian, J. Fortmann, and E. Gomez-Lazaro, “International requirements for large integration of renewable energy sources,” Large Scale Grid Integr. Renew. Energy Sources, pp. 29–57, 2017.
[24] K. Morison, L. Wang, and P. Kundur, “Power system security assessment,” IEEE power energy Mag., vol. 2, no. 5, pp. 30–39, 2004.
[25] F. P. Sakti and M. H. Achmad, “Peningkatan Voltage Stability Dengan Pemasangan Pembangkitan Tersebar pada Sistem Distribusi Area Yogyakarta Menggunakan Flower Pollination Algorithm,” Transm. J. Ilm. Tek. Elektro, vol. 24, no. 2, pp. 74–82.
[26] P. P. Rezky, “Studi Analisa Stabilitas Transien Sistem Jawa-Madura-Bali (Jamali) 500kV Setelah Masuknya Pembangkit Paiton 1000 MW Pada Tahun 2021,” Institut Teknologi Sepuluh Nopember, 2016.
[27] M. A. Guevara, A. Shaban, A. Nafisi, and others, “Modeling and Load Flow Analysis of a Microgrid Laboratory.,” Int. J. Smart Grid Sustain. Energy Technol., vol. 3, no. 2, pp. 103–111, 2019.
[28] E. Vittal, M. O’Malley, and A. Keane, “Rotor angle stability with high penetrations of wind generation,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 353–362, 2011.
[29] O. G. Ibe and A. I. Onyema, “Concepts of reactive power control and voltage stability methods in power system network,” IOSR J. Comput. Eng., vol. 11, no. 2, pp. 15–25, 2013.
[30] M. Eremia and M. Shahidehpour, Handbook of electrical power system dynamics: modeling, stability, and control, vol. 92. John Wiley & Sons, 2013.
[31] F. I. Pasaribu, “Beban Non Linier dan Analisa Harmonisa,” J. Elektro dan Telkomunikasi, vol. 5, no. 1, pp. 29–34, 2021.
[32] A. M. R. Lede, M. G. Molina, M. Martinez, and P. E. Mercado, “Microgrid architectures for distributed generation: A brief review,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), 2017, pp. 1–6.
[33] W. Su, J. Wang, and J. Roh, “Stochastic energy scheduling in microgrids with intermittent renewable energy resources,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1876–1883, 2013.
[34] M. A. M. Ramli, H. R. E. H. Bouchekara, and A. S. Alghamdi, “Efficient energy management in a microgrid with intermittent renewable energy and storage sources,” Sustain., vol. 11, no. 14, 2019, doi: 10.3390/su11143839.
[35] M. Fikri and D. Anggaini, “Metode Newton Raphson Untuk Analisis Aliran Daya Jaringan Distribusi 12, 66 kV,” J. Ilm. SUTET, vol. 8, no. 2, pp. 1505–2356, 2018.
[36] D. Yudanto and D. Tessal, “Analisis Aliran Daya Sistem Tenaga Listrik Pada PT. Sele Raya Merangin Dua Menggunakan Metode Newton-Raphson,” J. Electr. Power Control Autom., vol. 4, no. 2, pp. 51–58, 2021.
[37] F. Dani, A. Hasibuan, Asran, M. Jannah, and I. M. A. Nrarta, “Simulasi dan Analisa Pemasangan Distributed Generation Pada Sistem Distribusi 20 KV Menggunakan ETAP 19.0,” no. 72, pp. 443–454, 2022.
[38] M. Dicky, “Analisis Penempatan dan Kapasitas Distributed Generation (DG) Terhadap Profil Tegangan dan Rugi Daya pada Penyulang Lipat Kain-Riau,” UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU, 2020.
[39] F. Otniel, N. Busaeri, and S. Sutisna, “Analisa Aliran Daya Sistem Tenaga Listrik pada Bagian Penyulang 05ee0101a Di Area Utilities II PT. Pertamina (Persero) Refinery Unit Ivcilacap Menggunakan Metode Newton-Raphson,” J. Energy Electr. Eng., vol. 1, no. 1, 2019.
[40] A. B. S. Futri, K. Karnoto, and A. A. Zahra, “Analisa Harmonisa Tegangan dan Harmonisa Arus pada Sistem Elektrikal Gedung Teknik PWK dan Teknik Arsitektur Universitas Diponegoro,” Transient J. Ilm. Tek. Elektro, vol. 1, no. 4, 2021.
[41] H. Sugiarto, “Kajian Harmonisa Arus Dan Tegangan Listrik di Gedung Administrasi Politeknik Negeri Pontianak,” 2013.
[42] F. Baskoro, W. A. Billahi, S. I. Haryudo, U. T. Kartini, and others, “Analisis Perubahan Nilai Faktor Daya terhadap Pemasangan Kapasitor Bank pada Unit Boiler Pusat Pengembangan Sumber Daya Manusia Minyak dan Gas Bumi Cepu,” J. Tek. Elektro, vol. 10, no. 2, pp. 497–505, 2021.
[43] N. Tomy and I. Reza, “Analis Pengukuran dan Perhitungan Total Harmonic Distortion (THD) pada Beban Non Linier,” J. Sains Teknol. Fak. Tek., vol. 12, no. 1, pp. 1–8, 2022.