Characteristics of Albizia Chinensis Wood Sawdust Briquette Product at High Compression Method
##plugins.themes.academic_pro.article.main##
Abstract
One of the biomass potentials that can be utilized is felled wood waste which can be used as an energy source. The advantage of biomass is that it can be renewed so that it triggers a sustainable energy source. Biomass energy that will be made into briquettes is processed and compressed so that the shape is more regular and has a high calorific value. In this study, wood waste will be used as a source of biomass. The test was carried out, namely the thermogravimetric test to determine the proximate content. The method used is using Sengon wood as a raw material with a particle size exceeding 18 mesh but not exceeding 30 mesh. Briquetting using a hydraulic pump and briquette hot molding, temperature variations of 250℃, 300℃, and 330℃ with a time of 10 minutes. The test was carried out, namely the thermogravimetric test to determine the proximate content of the briquettes. Applying pressure to the briquettes while simultaneously heating makes the briquettes strong. From 3 variations of temperature treatment, it was found that the temperature of 330℃ had a high carbon content and low volatility of all test samples.
Salah satu potensi biomassa yang bisa dijadikan sebagai sumber energi adalah limbah kayu hasil tebangan. Kelebihan biomassa adalah dapat diperbaharui. Energi biomassa yang akan dibuat menjadi briket diolah dan dimampatkan sehingga bentuknya lebih teratur dan mempunyai nilai kalor yang tinggi. Penelitian ini akan menggunakan sampah kayu untuk sumber biomassa. Pengujian dilakukan yaitu uji thermogravimetric untuk mengetahui kandungan proximate. Metode yang digunakan adalah dengan bahan baku kayu sengon dengan ukuran partikel antara 18 mesh tetapi tidak lebih dari 30 mesh. Pembriketan dengan pompa hidrolik dan cetak panas briket, variasi temperature 250℃, 300℃ dan 330℃ dengan waktu selama 10 menit. Pengujian thermogravimetric dilakukan untuk mengetahui kandungan proximate dari briket. Pemberian tekanan pada briket sekaligus pemanasan menjadikan briket yang kuat, dari 3 variasi perlakuan suhu. didapatkan bahwa suhu 330℃ memiliki kandungan karbon yang tinggi dan volatile yang rendah dari semua sample uji.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Adam Mandra Suwandi, Yolli Fernanda, Ambiyar Ambiyar, Andril Arafat (2023)References
[2] L. Parinduri and T. Parinduri, “Konversi Biomassa Sebagai Sumber Energi Terbarukan,” vol. 5, no. 2, 2020.
[3] G. Zhi, C. Peng, Y. Chen, D. Liu, G. Sheng, and J. Fu, “Deployment of coal briquettes and improved stoves: Possibly an option for both environment and climate,” Environ. Sci. Technol., vol. 43, no. 15, pp. 5586–5591, Aug. 2009, doi: 10.1021/ES802955D/ASSET/IMAGES/LARGE/ES-2008-02955D_0003.JPEG.
[4] H. Nurdin, W. Wagino, D. Y. Sari, and B. M. Siregar, “Characteristics of Calorific Value of Briquettes Made From Cymbopogon Citratus Waste As an Alternative Fuel,” Teknomekanik, vol. 5, no. 1, pp. 42–47, May 2022, doi: 10.24036/TEKNOMEKANIK.V5I1.12572.
[5] D. Hendra, “PEMBUATAN BRIKET ARANG DARI CAMPURAN KAYU, BAMBU, SABUT KELAPA DAN TEMPURUNG KELAPA SEBAGAI SUMBER ENERGI ALTERNATIF,” J. Penelit. Has. Hutan, vol. 25, no. 3, pp. 242–255, Oct. 2007, doi: 10.20886/JPHH.2007.25.3.242-255.
[6] P. Bergman, A. Boersma, … J. K.-2nd W. C., and undefined 2005, “Torrefaction for entrained-flow gasification of biomass,” publicaties.ecn.nl.
[7] J. J. Chew and V. Doshi, “Recent advances in biomass pretreatment - Torrefaction fundamentals and technology,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 4212–4222, 2011, doi: 10.1016/j.rser.2011.09.017.
[8] B. Lela, M. Barišić, and S. Nižetić, “Cardboard/sawdust briquettes as biomass fuel: Physical-mechanical and thermal characteristics,” Waste Manag., vol. 47, pp. 236–245, 2016, doi: 10.1016/j.wasman.2015.10.035.
[9] X. Luo, “Torrefaction of biomass – a comparative and kinetic study of thermal decomposition for Norway spruce stump, poplar and fuel tree chips,” pp. 1–82, 2011.
[10] Z. Wang, C. J. Lim, J. R. Grace, H. Li, and M. R. Parise, “Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor,” Bioresour. Technol., vol. 244, pp. 281–288, 2017, doi: 10.1016/j.biortech.2017.07.097.
[11] D. D. Saputro and W. Widayat, “Karakterisasi Limbah Pengolahan Kayu Sengon Sebagai Bahan Bakar Altrnatif,” Karakterisasi Limbah Pengolah. Kayu Sengon Sebagai Bahan Bakar Altrnatif, vol. 14, no. 1, pp. 21–29, 2016.
[12] I. N. Sukarta and P. S. Ayuni, “Analisis Proksimat Dan Nilai Kalor Pada Pellet Biosolid Yang Dikombinasikan Dengan Biomassa Limbah Bambu,” JST (Jurnal Sains dan Teknol., vol. 5, no. 1, pp. 728–735, 2016, doi: 10.23887/jst-undiksha.v5i1.8278.
[13] P. Basu, Biomass Gasification and Pyrolysis. 2010.
[14] M. Y. De Luna et al., “Environmental Effects A thermogravimetric analysis of biomass wastes from the northeast region of Brazil as fuels for energy recovery,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–16, 2018, doi: 10.1080/15567036.2018.1549132.
[15] A. Strandberg, P. Holmgren, and M. Broström, “Predicting fuel properties of biomass using thermogravimetry and multivariate data analysis,” Fuel Process. Technol., vol. 156, pp. 107–112, 2017, doi: 10.1016/j.fuproc.2016.10.021.