The Influence of Coolant Fluid Variations on the Thermoelectric Generator Performance Utilizing Solar Radiation on Zinc Roof

##plugins.themes.academic_pro.article.main##

Khairul Rezki
Primawati Primawati
* Corresponding author: primawati@ft.unp.ac.id
Ambiyar Ambiyar
Remon Lapisa

Abstract

Solar energy can be converted into electricity through a thermoelectric generator that operates based on the Seebeck effect, where a greater temperature difference in the thermoelectric element produces a higher voltage. This research aims to evaluate the performance of a thermoelectric generator with various coolant fluids. The study utilized a prototype house with a corrugated zinc roof. Eight thermoelectric generators of SP 1848 27145 SA type, connected in series, were installed beneath the zinc roof. Data were collected over three days from 08:00 to 16:00 in an area exposed to direct sunlight. The results showed an average voltage of 0.593 V for air cooling, 0.539 V for water coolant, and 0.639 V for liquid cooling. From the data, the highest voltage achieved was 1.013 V with liquid cooling, indicating that liquid cooling provides superior cooling capability.


Energi surya dapat diubah menjadi listrik melalui termoelektrik generator yang bekerja berdasarkan efek Seebeck, di mana perbedaan temperatur yang lebih besar termoelektrik akan menghasilkan tegangan yang lebih besar. Penelitian ini bertujuan untuk mengevaluasi kinerja termoelektrik generator dengan berbagai jenis cairan pendingin. Penelitian ini menggunakan prototipe rumah dengan atap seng bergelombang. Delapan termoelektrik generator tipe SP 1848 27145 SA yang terhubung seri akan dipasang di bawah atap seng. Data dikumpulkan selama tiga hari pada jam 08.00 - 16.00 di area yang terkena sinar matahari langsung. Hasilnya, rata-rata tegangan yang dihasilkan adalah 0,593 V untuk pendingin udara, 0,539 V untuk pendingin water coolant, dan 0,639 V untuk pendingin air. Dari data tersebut, tegangan tertinggi yang dicapai adalah 1,013 V dengan pendingin air. Hal ini menunjukkan bahwa pendingin air memiliki kemampuan pendinginan yang lebih baik.

##plugins.themes.academic_pro.article.details##

How to Cite
Rezki, K., Primawati, P., Ambiyar, A., & Lapisa, R. (2023). The Influence of Coolant Fluid Variations on the Thermoelectric Generator Performance Utilizing Solar Radiation on Zinc Roof. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 5(3), 501-512. https://doi.org/10.46574/motivection.v5i3.266

References

[1] Z. Sun et al., “Emerging design principles, materials, and applications for moisture-enabled electric generation,” eScience, vol. 2, no. 1, pp. 32–46, 2022, doi: 10.1016/j.esci.2021.12.009.
[2] Q. Xiahou, C. H. Springer, and R. Mendelsohn, “The effect of foreign investment on Asian coal power plants,” Energy Econ., vol. 105, 2022, doi: 10.1016/j.eneco.2021.105752.
[3] Dewan Energi Nasional, “Neraca Energi Nasional 2020,” Lap. Kaji. Penelahaan Neraca Energi Nas. 2020, p. 14, 2020.
[4] N. A. Handayani and D. Ariyanti, “Potency of solar energy applications in Indonesia,” Int. J. Renew. Energy Dev., vol. 1, no. 2, pp. 33–38, 2012, doi: 10.14710/ijred.1.2.33-38.
[5] G. Widayana, “Prototipe Sistem Pengering Cengkeh Dengan Energi Surya,” Pros. Semin. Nas. Tah. mesin XIV (SNTTM XIV), no. Snttm Xiv, pp. 7–8, 2015, [Online]. Available: file:///D:/VIII_Semester/MKI/Dapus/2015_Gede Sistem Pengeringan.pdf
[6] F. Rozi, I. Rahmayuni, A. Syawaldipa, F. Nova, P. Primawati, and B. Batara, “A Framework of image processing and machine learning utilization for flood disaster management,” Teknomekanik, vol. 5, no. 2, pp. 112–117, 2022, doi: 10.24036/teknomekanik.v5i2.17372.
[7] E. Roza and M. Mujirudin, “Perancangan Pembangkit Tenaga Surya Fakultas Teknik UHAMKA,” Ejournal Kaji. Tek. Elektro, vol. 4, no. 1, pp. 16–30, 2019, [Online]. Available: http://download.garuda.ristekdikti.go.id/article.php?article=984946&val=11994&title=PERANCANGAN PEMBANGKIT TENAGA SURYA FAKULTAS TEKNIK UHAMKA
[8] N. Nazaruddin, T. Zulfadli, and A. Mulkan, “Studi Kemampuan Penyerapan Panas pada Atap Rumah Seng Berwarna Terhadap Intensitas Matahari dalam Mengatasi Global Warming,” Int. J. Nat. Sci. Eng., vol. 4, no. 3, p. 114, 2020, doi: 10.23887/ijnse.v4i3.30065.
[9] S. Kumar, S. D. Heister, X. Xu, and J. R. Salvador, “Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems,” J. Electron. Mater., vol. 44, no. 10, pp. 3627–3636, 2015, doi: 10.1007/s11664-015-3912-4.
[10] S. M. Pourkiaei et al., “Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials,” Energy, vol. 186, 2019, doi: 10.1016/j.energy.2019.07.179.
[11] A. Saputra, R. Lapisa, R. Refdinal, and S. Rizki Putri Primandari, “Analysis of the Effect of a Glass Layer on the Roof of a House of a Thermoelectric Generator on Temperature and Electrical Voltage,” Motiv. J. Mech. Electr. Ind. Eng., vol. 4, no. 2, pp. 87–98, 2022, doi: 10.46574/motivection.v4i2.115.
[12] K. D. Anisa, A. K, R. Lapisa, and M. Mulianti, “Comparative Study of Numerical and Experimental Analysis of Micro Hydro Power Plant in Nagari Koto Hilalang Solok Regency,” Motiv. J. Mech. Electr. Ind. Eng., vol. 5, no. 1, pp. 47–60, 2022, doi: 10.46574/motivection.v5i1.188.
[13] M. Hamid Elsheikh et al., “A review on thermoelectric renewable energy: Principle parameters that affect their performance,” Renew. Sustain. Energy Rev., vol. 30, pp. 337–355, 2014, doi: 10.1016/j.rser.2013.10.027.
[14] A. Alashkar and A. H. Alami, “Overview of Thermoelectric Materials,” in Encyclopedia of Smart Materials, Elsevier, 2021, pp. 319–325. doi: 10.1016/B978-0-12-815732-9.00093-0.
[15] A. Pawawoi and Z. Zulfahmi, “Penambahan Sistem Pendingin Heatsink Untuk Optimasi Penggunaan Reflektor Pada Panel Surya,” J. Nas. Tek. Elektro, vol. 8, no. 1, p. 1, 2019, doi: 10.25077/jnte.v8n1.607.2019.