Electrochemical Characterization Techniques for Performance Optimization in Dye-sensitized Solar Cells: A Narrative Review
##plugins.themes.academic_pro.article.main##
Abstract
Dye-sensitized solar cells (DSSCs) offer advantages such as low production costs, simple fabrication methods, and reduced toxicity compared to silicon-based solar cells, although their efficiency remains a major limitation. The aim of this review is to discuss the fundamental principles of DSSCs and evaluate the electrochemical techniques used to optimize their performance. The method employed is a narrative literature review, allowing the author to synthesize relevant literature from various sources. Current-voltage (I-V) measurements and electrochemical impedance spectroscopy (EIS) are identified as the primary tools for assessing DSSC efficiency and quality. The findings indicate that I-V measurements provide critical metrics such as efficiency and fill factor, while EIS helps identify charge transfer resistance and improves cell stability. Techniques such as voltammetry and Tafel polarization plots offer additional insights into catalytic activity and diffusivity. This review underscores the importance of electrochemical characterization in supporting efficiency improvements and the development of new materials, with EIS playing a key role in modelling cell morphology through equivalent circuit analysis.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Agung Purnomo, Achmad Aziizudin, Arbye S, Cahyo Wibi Yogiswara, Dimas Ardiansyah Halim, Setya Drana Harry Putra (2024)References
[2] N. Kutlu, “Investigation of electrical values of low-efficiency dye-sensitized solar cells (DSSCs),” Energy, vol. 199, p. 117222, 2020, doi: https://doi.org/10.1016/j.energy.2020.117222.
[3] K. Sharma, V. Sharma, and S. S. Sharma, “Dye-Sensitized Solar Cells: Fundamentals and Current Status,” 2018, Springer New York LLC. doi: 10.1186/s11671-018-2760-6.
[4] S. Assegaf, “Highest Efficiency Dssc Fabrication With Natural Dye and Chemical Dye,” International Journal of Education, Information Technology, and Others, vol. 7, no. 2, pp. 266–238, 2024, doi: 10.5281/zenodo.11195100.
[5] A. Rais and Y. Warti, “Analysis of DSSC (dye sensitized solar cell) and characterization of ZnO-TiO2 semiconductor using method sol-gel as a material solar cell,” J Phys Conf Ser, vol. 2193, no. 1, p. 012093, 2022, doi: 10.1088/1742-6596/2193/1/012093.
[6] A. J. Riquelme et al., “Characterization of Photochromic Dye Solar Cells Using Small-Signal Perturbation Techniques,” ACS Appl Energy Mater, vol. 4, no. 9, pp. 8941–8952, Sep. 2021, doi: 10.1021/acsaem.1c01204.
[7] J. Gao, A. Tot, H. Tian, J. M. Gardner, D. Phuyal, and L. Kloo, “Electrochemical impedance and X-ray absorption spectroscopy analyses of degradation in dye-sensitized solar cells containing cobalt tris(bipyridine) redox shuttles,” Physical Chemistry Chemical Physics, vol. 24, no. 31, pp. 18888–18895, Jul. 2022, doi: 10.1039/d2cp02283d.
[8] A. C. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy─A Tutorial,” Jun. 21, 2023, American Chemical Society. doi: 10.1021/acsmeasuresciau.2c00070.
[9] Md. K. Nazeeruddin, E. Baranoff, and M. Grätzel, “Dye-sensitized solar cells: A brief overview,” Solar Energy, vol. 85, no. 6, pp. 1172–1178, 2011, doi: https://doi.org/10.1016/j.solener.2011.01.018.
[10] Masud and H. K. Kim, “Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective,” ACS Omega, vol. 8, no. 7, pp. 6139–6163, Feb. 2023, doi: 10.1021/acsomega.2c06843.
[11] Z. Agheli, M. Pordel, and S. A. Beyramabadi, “Synthesis, characterization, optical properties, computational characterizations, QTAIM analysis and cyclic voltammetry of new organic dyes for dye-sensitized solar cells,” J Mol Struct, vol. 1202, Feb. 2020, doi: 10.1016/j.molstruc.2019.127228.
[12] P. Setiarso, R. V. Harsono, and N. Kusumawati, “Fabrication of Dye Sensitized Solar Cell (DSSC) Using Combination of Dyes Extracted from Curcuma (Curcuma xanthorrhiza) Rhizome and Binahong (Anredera cordifolia) Leaf with Treatment in pH of the Extraction,” Indonesian Journal of Chemistry, vol. 23, no. 4, pp. 924–936, 2023, doi: 10.22146/ijc.77860.
[13] F. Arjmand, Z. Rashidi Ranjbar, and H. Fatemi E. G, “Effect of dye complex structure on performance in DSSCs; An experimental and theoretical study,” Heliyon, vol. 8, no. 11, Nov. 2022, doi: 10.1016/j.heliyon.2022.e11692.
[14] H. A. Deepa, G. M. Madhu, and B. E. K. Swamy, “Evaluation of performance characteristics of nano TiO2and TiO2-ZnO composite for DSSC applications and electrochemical determination of potassium ferrocyanide using cyclic voltammetry,” Mater Res Express, vol. 8, no. 12, Dec. 2021, doi: 10.1088/2053-1591/ac3e27.
[15] C. Fengxiang, A. Yu, W. Jiafu, and W. Lisheng, “The I-V Measurement System for Solar Cells Based on MCU,” J Phys Conf Ser, vol. 276, no. 1, p. 012161, 2011, doi: 10.1088/1742-6596/276/1/012161.
[16] A. M. Abdel-Maksood and F. A. S. Soliman, “Performance Dependence of (I-V) and (C-V) for Solar Cells on Environmental Conditions,” 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:212532196
[17] S. Visnupriya, N. Prabavathi, and P. Vijayakumar, “Ni-Mo bimetallic oxides/rGO nanocomposites as counter electrode for the application of DSSCs,” Chemical Physics Impact, vol. 8, p. 100598, 2024, doi: https://doi.org/10.1016/j.chphi.2024.100598.
[18] D. Kumar Sharma and G. Purohit, “Fill Factor based Maximum Power Point Tracking (MPPT) for Standalone Solar PV System Sustainable Innovations Welfare Society (SIWS) Meerut INDIA Fill Factor Based Maximum Power Point Tracking (MPPT) for Standalone Solar PV System,” 2013. [Online]. Available: https://www.researchgate.net/publication/259757513
[19] S. Khunchan and B. Wiengmoon, “Method to determine the single curve IV characteristic parameter of solar cell,” J Phys Conf Ser, vol. 1144, no. 1, p. 012012, 2018, doi: 10.1088/1742-6596/1144/1/012012.
[20] F. Dincer and M. E. Meral, “Critical Factors that Affecting Efficiency of Solar Cells,” Smart Grid and Renewable Energy, vol. 1, pp. 47–50, 2010, [Online]. Available: https://api.semanticscholar.org/CorpusID:27708847
[21] M. H. Wolfe, “Efficiency in Solar Cells,” 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:18357653
[22] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” J Appl Phys, vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034.
[23] J. M. Greulich, M. Glatthaar, and S. Rein, “Fill factor analysis of solar cells’ current–voltage curves,” Progress in Photovoltaics: Research and Applications, vol. 18, 2010, [Online]. Available: https://api.semanticscholar.org/CorpusID:98270169
[24] A. Yildiz et al., “Efficient Iron Phosphide Catalyst as a Counter Electrode in Dye-Sensitized Solar Cells,” ACS Appl Energy Mater, vol. 4, no. 10, pp. 10618–10626, Oct. 2021, doi: 10.1021/acsaem.1c01628.
[25] Y. Zhang, P. Wang, T. Zhang, and B. Gou, “High-Efficiency Dye-Sensitized Solar Cells Based on Kesterite Cu2ZnSnSe4Inlaid on a Flexible Carbon Fabric Composite Counter Electrode,” ACS Omega, vol. 5, no. 38, pp. 24898–24905, Sep. 2020, doi: 10.1021/acsomega.0c03686.
[26] D. Nan, H. Fan, A. Bolag, W. Liu, and T. Bao, “Enhanced electrocatalytic properties in dye-sensitized solar cell via Pt/SBA-15 composite with optimized Pt constituent,” Heliyon, vol. 9, no. 11, p. e22403, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e22403.
[27] ICECDS : 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing : 1-2 August 2017, Chennai, India. Institute of Electrical and Electronics Engineers, 2018.
[28] N. Kanjana et al., “Fly ash boosted electrocatalytic properties of PEDOT:PSS counter electrodes for the triiodide reduction in dye-sensitized solar cells,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-33020-6.
[29] J. Mohammadian, S. Osfouri, T. Jalali, and A. Jamekhorshid, “Electrochemical impedance spectroscopy analysis of dye-sensitized solar cells composed of electrospun composite photoanodes: A comparative study of natural and synthetic sensitizers,” Optik (Stuttg), vol. 303, p. 171730, 2024, doi: https://doi.org/10.1016/j.ijleo.2024.171730.
[30] A. Ch. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy─A Tutorial,” ACS Measurement Science Au, vol. 3, no. 3, pp. 162–193, Jun. 2023, doi: 10.1021/acsmeasuresciau.2c00070.
[31] A. J. Riquelme et al., “Characterization of Photochromic Dye Solar Cells Using Small-Signal Perturbation Techniques,” ACS Appl Energy Mater, vol. 4, no. 9, pp. 8941–8952, Sep. 2021, doi: 10.1021/acsaem.1c01204.
[32] W. Rahmalia, I. H. Silalahi, T. Usman, J. F. Fabre, Z. Mouloungui, and G. Zissis, “Stability, reusability, and equivalent circuit of TiO2/treated metakaolinite-based dye-sensitized solar cell: effect of illumination intensity on V oc and I sc values,” Mater Renew Sustain Energy, vol. 10, no. 2, Jun. 2021, doi: 10.1007/s40243-021-00195-9.
[33] S. Sahu, M. Patel, A. K. Verma, and S. Tiwari, “Analytical study of current density-voltage relation in dye-sensitized solar cells using equivalent circuit model,” in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 2017, pp. 1489–1493. doi: 10.1109/ICECDS.2017.8389693.
[34] J. Gao, A. Tot, H. Tian, J. M. Gardner, D. Phuyal, and L. Kloo, “Electrochemical impedance and X-ray absorption spectroscopy analyses of degradation in dye-sensitized solar cells containing cobalt tris(bipyridine) redox shuttles,” Physical Chemistry Chemical Physics, vol. 24, no. 31, pp. 18888–18895, Jul. 2022, doi: 10.1039/d2cp02283d.
[35] M. A. Varnosfaderani and D. Strickland, “Online Electrochemical Impedance Spectroscopy (EIS) estimation of a solar panel,” Vacuum, vol. 139, pp. 185–195, 2017, doi: https://doi.org/10.1016/j.vacuum.2017.01.011.
[36] S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation,” International Journal of Photoenergy, vol. 2014, pp. 1–17, 2014, [Online]. Available: https://api.semanticscholar.org/CorpusID:55158383
[37] J. Gao, A. Tot, H. Tian, J. M. Gardner, D. Phuyal, and L. Kloo, “Electrochemical impedance and X-ray absorption spectroscopy analyses of degradation in dye-sensitized solar cells containing cobalt tris(bipyridine) redox shuttles,” Physical Chemistry Chemical Physics, vol. 24, no. 31, pp. 18888–18895, Jul. 2022, doi: 10.1039/d2cp02283d.
[38] M. S. H. Choudhury, S. E. Ahmed Himu, M. U. Khan, M. Z. Hasan, M. S. Alam, and T. Soga, “Analysis of charge transport resistance of ZnO-based DSSCs because of the effect of different compression temperatures,” AIP Adv, vol. 13, no. 9, p. 095129, Sep. 2023, doi: 10.1063/5.0166767.
[39] V. A. González-Verjan et al., “Effect of TiO2 particle and pore size on DSSC efficiency,” Mater Renew Sustain Energy, vol. 9, no. 2, Jul. 2020, doi: 10.1007/s40243-020-00173-7.
[40] R. Agarwal, Y. Vyas, P. Chundawat, Dharmendra, and C. Ameta, “Outdoor Performance and Stability Assessment of Dye-Sensitized Solar Cells (DSSCs),” in Solar Radiation, M. Aghaei, Ed., Rijeka: IntechOpen, 2021, p. Ch. 7. doi: 10.5772/intechopen.98621.
[41] M. Becker, M. S. Bertrams, E. C. Constable, and C. E. Housecroft, “How reproducible are electrochemical impedance spectroscopic data for dye-sensitized solar cells?,” Materials, vol. 13, no. 7, Apr. 2020, doi: 10.3390/ma13071547.
[42] S. Rudra, H. W. Seo, S. Sarker, and D. M. Kim, “Simulation and electrochemical impedance spectroscopy of dye-sensitized solar cells,” Journal of Industrial and Engineering Chemistry, vol. 97, pp. 574–583, 2021, doi: https://doi.org/10.1016/j.jiec.2021.03.010.
[43] A. E. Touihri, T. Azizi, and R. Gharbi, “Autonomous I-V and Electrochemical Impedance Spectroscopy characterization system for Dye Sensitized Solar Cells,” in Proceedings of the International Conference on Advanced Systems and Emergent Technologies, IC_ASET 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 235–240. doi: 10.1109/IC_ASET49463.2020.9318312.
[44] M. Z. H. Khan, M. R. Al-Mamun, P. K. Halder, and M. A. Aziz, “Performance improvement of modified dye-sensitized solar cells,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 602–617, 2017, doi: https://doi.org/10.1016/j.rser.2016.12.087.
[45] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes,” Chemical Communications, vol. 51, no. 88, pp. 15894–15897, 2015, doi: 10.1039/C5CC06759F.
[46] Z. Yang, Y. Xia, J. Ji, B. Qiu, K. Zhang, and Z. Liu, “Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries,” RSC Adv, vol. 6, no. 15, pp. 12107–12113, 2016, doi: 10.1039/C5RA23283J.
[47] L. Kavan, J.-H. Yum, and M. Grätzel, “Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells,” Nano Lett, vol. 11, no. 12, pp. 5501–5506, Dec. 2011, doi: 10.1021/nl203329c.
[48] L. Kavan, J.-H. Yum, and M. Graetzel, “Graphene-based cathodes for liquid-junction dye sensitized solar cells: Electrocatalytic and mass transport effects,” Electrochim Acta, vol. 128, pp. 349–359, 2014, doi: https://doi.org/10.1016/j.electacta.2013.08.112.