Design of an Off-Grid Solar PV System for a Renewable Energy-Based Home in Bengkulu
##plugins.themes.academic_pro.article.main##
Abstract
Bengkulu Province has a solar energy potential of 3,475 MW, with an average daily solar irradiance duration of 5.9 hours in 2022 and 8.3 hours in 2023. This study designs an off-grid solar PV system for a renewable energy-based home (REH) model in the coastal area of Bengkulu City. The REH is a home with electrical energy independence that utilizes renewable energy systems to generate electricity. This study focuses on the REH powered by solar energy, intended for a modest home with a power capacity equivalent to a 900 VA PLN customer classification. The data on solar energy potential in the coastal area of Bengkulu City used in this study is from the Global Solar Atlas. The data analysis confirmed the need for the REH model to generate electricity from solar energy, requiring 12 units of 120Wp PV modules in a PV array. An appropriate solar charge controller for this REH model is the MPPT SCC with a rating of 48 V 30 A. Based on the selected PV modules and the daily load of the REH model, the required 48 V battery capacity is 300 Ah, and the PSW Inverter 2,000 VA 48 V.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Reza Satria Rinaldi, Afriyastuti Herawati, Ika Novia Anggraini, Helmizar Helmizar (2025)References
[2] D. R. Adhikari, R. Jariyaboon, and K. Techato, “Reducing Carbon Emissions Through Sustainable Energy Integration at Off-Grid Cellular Sites: A Case Study of Nepal,” International Journal of Ambient Energy, vol. 45, no. 1, hal. 2366496, 2024, doi: 10.1080/01430750.2024.2366496.
[3] B. Radley and P. Lehmann-Grube, “Off-Grid Solar Expansion and Economic Development in The Global South: A Critical Review and Research Agenda,” Energy Research and Social Science, vol. 89, no. December 2021, hal. 102673, 2022, doi: 10.1016/j.erss.2022.102673.
[4] M. Tawalbeh, A. Al-Othman, F. Kafiah, E. Abdelsalam, F. Almomani, and M. Alkasrawi, “Environmental Impacts of Solar Photovoltaic Systems: A Critical Review of Recent Progress and Future Outlook,” Science of The Total Environment, vol. 759, hal. 143528, 2021, doi: 10.1016/j.scitotenv.2020.143528.
[5] B. J. Alqahtani and D. Patino-Echeverri, “Identifying Economic and Clean Strategies to Provide Electricity in Remote Rural Areas: Main-Grid Extension vs. Distributed Electricity Generation,” Energies, vol. 16, no. 2, 2023, doi: 10.3390/en16020958.
[6] N. C. Pradana, M. A. Rizki, A. Wahyuni, and B. Harsono, “Solar Panel Implementation for Household Electricity in Indonesia: Environmental and Economic Implications,” Academia Open, vol. 8, no. 2, hal. 6–10, 2023, doi: 10.21070/acopen.8.2023.7860.
[7] I. J. Mwakitalima, M. Rizwan, and N. Kumar, “Standalone Solar Photovoltaic Electricity Supply to Rural Household in Tanzania,” IETE Journal of Research, vol. 69, no. 6, hal. 3871–3886, 2023, doi: 10.1080/03772063.2021.1920854.
[8] N. Wagner, M. Rieger, A. S. Bedi, J. Vermeulen, and B. A. Demena, “The Impact of Off-grid Solar Home Systems in Kenya on Energy Consumption and Expenditures,” Energy Economics, vol. 99, hal. 105314, 2021, doi: 10.1016/j.eneco.2021.105314.
[9] H. C. O. Unegbu, D. S. Yawas, B. Dan-asabe, and A. A. Alabi, “An Investigation of Renewable Energy Solutions for Off-Grid Sustainable Housing in Rural Nigeria,” Journal of Sustainable Construction, vol. 4, no. 1, hal. 37–59, 2024, doi: 10.26593/josc.v4i1.8112.
[10] H. Audu and A. Adamu, “Expanding Energy Access In Rural Off-Grid Communities: A Study On Household Adoption and Affordability of Solar Home Systems in Kwara State, Nigeria,” Journal of Global Economics and Business, vol. 3, no. 11, hal. 181–201, 2022, doi: 10.58934/jgeb.v3i11.166
[11] D. F. Silalahi, A. Blakers, M. Stocks, B. Lu, C. Cheng, and L. Hayes, “Indonesia’s Vast Solar Energy Potential,” Energies, vol. 14, no. 17, 2021, doi: 10.3390/en14175424.
[12] Gubernur Bengkulu, Peraturan Daerah Provinsi Bengkulu Nomor 7 Tahun 2019 Tentang Rencana Umum Energi Daerah Provinsi Bengkulu. Indonesia, 2017. [Daring]. Tersedia pada: https://jdih.bengkuluprov.go.id/produk/detail_produk/429-peraturan-daerah-provinsi-bengkulu-nomor-7-tahun-2019-tentang-rencana-umum-energi-daerah-provinsi-be.html.
[13] BPS Provinsi Bengkulu, Provinsi Bengkulu Dalam Angka 2024, Volume 37. Bengkulu: BPS Provinsi Bengkulu, 2024. [Daring]. Tersedia pada: https://bengkulu.bps.go.id/id/publication/2024/02/28/c6321e59609376455eeab025/provinsi-bengkulu-dalam-angka-2024.html.
[14] BPS Kota Bengkulu, Kota Bengkulu Dalam Angka 2024, Volume 18. Bengkulu: BPS Kota Bengkulu, 2024. [Daring]. Tersedia pada: https://bengkulukota.bps.go.id/id/publication/2024/02/28/cb9e749bba81a2b21fb98b1b/kota-bengkulu-dalam-angka-2024.html.
[15] D. A. Efriansyah, A. Herawati, I. N. Anggraini, R. S. Rinaldi, and Y. Rodiah, “Analisis Potensi Energi Matahari and Pembangkitan Daya Pada PLTS Sebagai Sumber Rumah Energi Terbarukan Sederhana di Kota Bengkulu,” Serambi Engineering, vol. 9, no. 1, hal. 8258–8267, 2024, [Daring]. Tersedia pada: http://jurnal.serambimekkah.ac.id/index.php/jse/article/view/960/714.
[16] R. Satpathy and V. Pamuru, “Off-grid Solar Photovoltaic Systems,” in Solar PV Power, Lisa Reading, Ed., London: Academic Press, 2021, 7, hal. 267–315. doi: 10.1016/b978-0-12-817626-9.00007-1.
[17] R. A. Efryansah, “Mengetahui Perbedaan Sel, Modul, String, dan Array Surya,” Kelas Teknisi. Diakses: 24 Juni 2024. [Daring]. Tersedia pada: https://www.kelasteknisi.com/2024/05/perbedaan-sel-modul-string-dan-array-surya.html.
[18] M. Y. Puriza, W. Yandi, and Asmar, “Perbandingan Efisiensi Konversi Energi Panel Surya Tipe Polycrystaline dengan Panel Surya Monocrystaline Berbasis Arduino di Kota Pangkalpinang,” Jurnal Ecotipe (Electronic, Control, Telecommunication, Information, and Power Engineering), vol. 8, no. 1, hal. 47–52, 2021, doi: 10.33019/jurnalecotipe.v8i1.2034.
[19] D. Dahliya, S. Samsurizal, and N. Pasra, “Efficiency of a 100 Wp Capacity Solar Panel Due to the Effect of Temperature and Wind Speed,” Jurnal Ilmiah SUTET, vol. 11, no. 2, hal. 71–80, 2021, doi: 10.33322/sutet.v11i2.1551.
[20] M. Anggara and W. Saputra, “Analisis Kinerja Sel Surya Monocrystalline dan Polycrystalline di Kabupaten Sumbawa NTB,” Jurnal Flywheel, vol. 14, no. 1, hal. 7–12, 2023, doi: 10.36040/flywheel.v14i1.6521.
[21] P. S. Acharya and P. S. Aithal, “A Comparative Study of MPPT and PWM Solar Charge Controllers and their Integrated System,” in Journal of Physics: Conference Series, 2020, hal. 1–7. doi: 10.1088/1742-6596/1712/1/012023.
[22] N. Ghadirinejad, F. Ottermo, R. Nowzari, N. Alsaadi, and M. Ghadiri Nejad, “Optimizing a Green and Sustainable Off-Grid Energy-System Design: A Real Case,” Sustainability (Switzerland), vol. 15, no. 17, 2023, doi: 10.3390/su151712800.
[23] Fianti, A. Y. Perdana, B. Astuti, and I. Akhlis, “Analysis of PWM- And MPPT-solar charge controller efficiency by simulation,” Journal of Physics: Conference Series, vol. 1918, no. 2, hal. 1–6, 2021, doi: 10.1088/1742-6596/1918/2/022004.
[24] E. Faizal, Y. A. Winoko, M. S. Mustapa, and M. Kozin, “Solar Charger Controller Efficiency Analysis of Type Pulse Width Modulation (PWM) and Maximum Power Point Tracking (MPPT),” Asian Journal Science and Engineering, vol. 1, no. 2, hal. 90, 2023, doi: 10.51278/ajse.v1i2.546.
[25] H. Adamu, F. Njoka, and G. Kidegho, “Performance of MPPT Charge Controller Under Moderate - to High - Temperature Field Condition,” Journal of Sustainable Development of Energy, Water and Environment Systems, vol. 12, no. 3, hal. 1–15, 2024, doi: 10.13044/j.sdewes.d12.0504.
[26] Midun S, Vibhishan A, and Avinash R, “Pv Off Grid System with Improved Charge Controller Using Closed Loop Control,” International Research Journal on Advanced Engineering Hub (IRJAEH), vol. 2, no. 02, hal. 248–253, 2024, doi: 10.47392/irjaeh.2024.0040.
[27] I. P. G. I. Dwipayana, I. N. S. Kumara, and I. N. Setiawan, “Status of Battery in Indonesia to Support Application of Solar PV with Energy Storage,” Journal of Electrical, Electronics and Informatics, vol. 5, no. 1, hal. 29-40, 2021, doi: 10.24843/jeei.2021.v05.i01.p06.
[28] S. M. Jawd, N. H. Chekhyor, and A. M. Sabea, “Types of Solar Cell Batteries and their Energy Charging Methods,” Journal of Thermal Engineering and Applications, vol. 8, no. 2, hal. 16--22, 2021, [Daring]. Tersedia pada: https://engineeringjournals.stmjournals.in/index.php/JoTEA/article/view/5858.
[29] S. Emiralioglu, S. Karatay, and F. Erken, “The Design and the Application of Off-Grid Solar Power System for a House in Kastamonu,” Journal of Advanced Applied Sciences, vol. 3, no. 1, hal. 23–31, 2024, doi: 10.61326/jaasci.v3i1.253.
[30] D. L. King, W. E. Boyson, and J. A. Kratochvil, “Photovoltaic array performance model, SANDIA Report SAND2004-3535,” New Mexico, 2004. [Daring]. Tersedia pada: https://www.sandia.gov/research/publications/details/photovoltaic-array-performance-model-2004-08-01/
[31] A. T. Dare, D. T. Wemimo, S. T. Emmanuel, S. C. Titilayo, and D. Joseph, “Design Methodology and Implementation of Stand-Alone Solar Photovoltaic Power System for Daily Energy Consumption of 9.16 kWh,” Engineering Research Express, vol. 5, no. 4, hal. 045033, 2023, doi: 10.1088/2631-8695/acfdf5.
[32] F. Fadhlurrahman and H. Purnomo, “Rancang Bangun Pembangkit Listrik Tenaga Surya (PLTS) 300 Wp Dengan Sistem Automatic Transfer Switch (ATS) Untuk Rumah Sederhana,” Schrodinger, vol. 3, no. 2, hal. 145–157, 2022, [Daring]. Tersedia pada: https://jim.unindra.ac.id/index.php/schrodinger/article/view/8248
[33] A. E. Mirnawati and V. D. Pertiwi, “Rancang Bangun Sistem Pemanfaatan Energi Matahari Berbasis Panel Surya Untuk Penerangan Rumah Tinggal Masyarakat Kampung Mawokau Jaya Timika – Papua Tengah,” Jurnal Sosial and Teknologi Terapan AMATA, vol. 03, no. 1, hal. 34–38, 2024, doi: 10.55334/sostek.v3i1.200.
[34] H. Riafinola, I. K. L. N. Suciningtyas, I. Sholihuddin, and W. R. Puspita, “Rancang Bangun Pembangkit Listrik Tenaga Surya pada Penggunaan Listrik Rumah Tangga,” Journal Of Applied Electrical Engineering, vol. 6, no. 2, 2022, doi: 10.30871/jaee.v6i2.4809.
[35] P. Megantoro, A. Ma’arif, D. F. Priambodo, Iswanto, H. F. A. Kusuma, and S. D. Perkasa, “Mini Solar Home System for Electricity Supply in Coastal Rural Area, Case Study: Yogyakarta, Indonesia,” in 2022 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia: IEEE, 2022. doi: 10.1109/ICITSI56531.2022.9970836.
[36] G. Takyi and F. K. Nyarko, “Investigation of the Effect of Temperature Coefficients on Mono-Crystalline Silicon PV Module Installed in Kumasi, Ghana,” Journal of Power and Energy Engineering, vol. 08, no. 09, hal. 20–34, 2020, doi: 10.4236/jpee.2020.89003.