Environmental and Socio-Economic Impacts of Crude Palm Oil and Kernel Production

##plugins.themes.academic_pro.article.main##

Dian Kristina
* Corresponding author: diankristina09@gmail.com
Feri Afrinaldi
Nilda Tri Putri

Abstract

Palm oil had become one of Indonesia’s leading commodities, contributing significantly to national economic development; however, it faced sustainability challenges, particularly concerning greenhouse gas (GHG) emissions in line with international standards. This study examined the measurement of environmental impact per monetary unit of Crude Palm Oil (CPO) and kernel production in Palm Oil Mill X, by integrating environmental and socio-economic impacts through Eco-efficiency Analysis. The environmental impact assessment was conducted using the Life Cycle Assessment (LCA) method, while the socio-economic impact values were measured using the Economic Input-Output (EIO) method. The data used in this study consisted of primary data and secondary data. Primary data were collected directly from Palm Oil Mill X, including information on production volumes, energy consumption and waste generation. Secondary data were obtained from published literature, government reports and national statistical database to complement and validate the primary data used in the analysis. The study evaluated eleven environmental impact categories, one of which was GWP. The research findings indicated that for a functional unit of 1 ton of CPO, the GWP was measured at 556.31 kg CO₂ eq/ton CPO, with approximately 80% of the GWP originating from CPO processing and wastewater (POME). In terms of socio-economic aspects, the wage multiplier was recorded at 0.930 and the tax contribution at 0.0698, demonstrating the significant contribution of the palm oil industry to labor income. The final economic contribution value (G⁺) was noted to be Rp 23,728,407/ton CPO. The results of the Eco-efficiency Analysis revealed that the GWP per Rupiah was 2.34 × 10⁻⁵ kg CO₂ eq/Rp, indicating opportunities for emission reduction through the use of cleaner energy. This study provided a quantitative overview of the interrelationship between environmental performance and socio-economic benefits, serving as a strategic reference for enhancing the sustainability of the palm oil industry.

##plugins.themes.academic_pro.article.details##

How to Cite
Kristina, D., Afrinaldi, F., & Putri, N. (2025). Environmental and Socio-Economic Impacts of Crude Palm Oil and Kernel Production. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 7(3), 303-312. https://doi.org/10.46574/motivection.v7i3.480

References

[1] M. Sarwani, L. Nurida, and F. Agus, “Isu Emisi Gas Rumah Kaca dan Penggunaan Lahan Sehubungan dengan Pemanfaatan Bioenergi di Indonesia,” J. Litbang Pert, vol. 32, no. 2, pp. 56–66, 2013, [Online]. Available: http://en.wikipedia.org/wiki/
[2] S. P. Pareira, “Mencapai Keterlacakan Minyak Sawit Indonesia yang Menyeluruh melalui Harmonisasi ISPO-RSPO,” no. 56, 2023, [Online]. Available: https://repository.cips-indonesia.org/pt/publications/560889/mencapai-keterlacakan-minyak-sawit-indonesia-yang-menyeluruh-melalui-harmonisasi%0Ahttps://repository.cips-indonesia.org/media/publications/560889-mencapai-keterlacakan-minyak-sawit-indon-2b12d7
[3] S. Hasibuan and H. Thaheer, “Life Cycle Impact Assessment Produksi Biodiesel Sawit Untuk Mendukung Keberlanjutan Hilirisasi Industri Sawit Indonesia,” Semin. Nas. Inov. Dan Apl. Teknol. Di Ind. 2017 ITN Malang, pp. 1–7, 2017.
[4] RSPO, “iii RSPO Supply Chain Certification Standard RSPO-STD-T05-001 V2 ENG,” 2020.
[5] ISCC, “ISCC GUIDANCE WASTE AND RESIDUES FROM,” 2024.
[6] A. Armelly, M. Rusdi, and E. Pasaribu, “Analisis sektor unggulan perekonomian Indonesia: Model input-output,” Sorot, vol. 16, no. 2, p. 119, 2021, doi: 10.31258/sorot.16.2.119-134.
[7] S. A. Krisi, M. A. Jami’in, and M. Apriani, “Potensi Dampak Lingkungan Pada Industri Minyak Goreng Sawit Dengan Metode Life Cycle Assessment,” J. Ilmu Lingkung., vol. 20, no. 3, pp. 672–677, 2022, doi: 10.14710/jil.20.3.672-677.
[8] Y. Arba and S. Thamrin, “Journal Review: Perbandingan Pemodelan Perangkat Lunak Life Cycle Assessment (LCA) untuk Teknologi Energi,” J. Energi Baru dan Terbarukan, vol. 3, no. 2, pp. 142–153, 2022, doi: 10.14710/jebt.2022.14001.
[9] A. P. Iswara et al., “A Comparative Study of Life Cycle Impact Assessment using Different Software Programs,” IOP Conf. Ser. Earth Environ. Sci., vol. 506, no. 1, 2020, doi: 10.1088/1755-1315/506/1/012002.
[10] Badan Pusat Statistik, “Input Output Table of Indonesia 2016 (in Bahasa),” 2021, [Online]. Available: https://www.bps.go.id/id/publication/2021/03/31/081f6b0af2c15c524d72b660/tabel-input---output-indonesia-2016.html
[11] R. Heijungs, J. Guinée, and G. Huppes, Impact categories for natural resources and land use, no. Cml. 1997. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:IMPACT+CATEGORIES+FOR+NATURAL+RESOURCES+and+Land+Use#0
[12] N. Jungbluth, “Description of life cycle impact assessment methods Supplementary information for tenders,” pp. 1–40, 2020, [Online]. Available: my.sharepoint.com/personal/mitarbeiter1_esuservices_onmicrosoft_com/Documents/files/V orlagen/ESU-Description-of-LCIAmethods.docx
[13] W. Leontief, “The economy as a circular flow,” Struct. Chang. Econ. Dyn., vol. 2, no. 1, pp. 181–212, 1991, doi: 10.1016/0954-349X(91)90012-H.
[14] F. Afrinaldi, “A new method for measuring eco-efficiency,” Clean. Environ. Syst., vol. 7, no. July, p. 100097, 2022, doi: 10.1016/j.cesys.2022.100097.
[15] ISO, “Environmental Management - Life Cycle Assessment - Principles and Framework (ISO 14040:2006),” Br. Stand., vol. 3, no. 1, p. 32, 2004, [Online]. Available: https://www.iso.org/standard/23151.html
[16] A. Hidayatno, T. Y. M. Zagloel, W. W. Purwanto, . C., and L. Anggraini, “Cradle To Gate Simple Life Cycle Assessment of Biodiesel Production in Indonesia,” MAKARA Technol. Ser., vol. 15, no. 1, 2011, doi: 10.7454/mst.v15i1.851.
[17] Ahmadi et al., “Cradle to Gate Life Cycle Assessment of Palm Oil Industry,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1143, no. 1, p. 012044, 2021, doi: 10.1088/1757-899x/1143/1/012044.
[18] R. Kaewmai, A. H-Kittikun, and C. Musikavong, “Greenhouse gas emissions of palm oil mills in Thailand,” Int. J. Greenh. Gas Control, vol. 11, pp. 141–151, 2012, doi: 10.1016/j.ijggc.2012.08.006.
[19] A. Wijono, “Dampak Pengurangan Emisi Gas Rumah Kaca Pada Pemanfaatan POME untuk Pembangkit,” Pros. Semnastek, no. 1-2 November, pp. 1–9, 2017, [Online]. Available: https://jurnal.umj.ac.id/index.php/semnastek/article/view/1946%0Ahttps://jurnal.umj.ac.id/index.php/semnastek/article/download/1946/1596
[20] D. A. P. Sari, A. Rahmah, and N. A. Sasongko, “Life Cycle Assessment (LCA) in Palm Oil Plantation and Mill with Impact Categories Global Warming Potential, Acidification, and Eutrophication,” Int. J. Membr. Sci. Technol., vol. 10, no. 2, pp. 797–807, 2023, doi: 10.15379/ijmst.v10i2.1236.
[21] L. Reijnders and M. A. J. Huijbregts, “Palm oil and the emission of carbon-based greenhouse gases,” J. Clean. Prod., vol. 16, no. 4, pp. 477–482, 2008, doi: 10.1016/j.jclepro.2006.07.054.
[22] N. Permpool, A. Mahmood, H. U. Ghani, and S. H. Gheewala, “An eco-efficiency assessment of bio-based diesel substitutes: A case study in Thailand,” Sustain., vol. 13, no. 2, pp. 1–10, 2021, doi: 10.3390/su13020576.
[23] A. P. Acero, C. Rodríguez, and A. Ciroth, “LCIA methods,” Impact Assess. methods Life Cycle Assess. their impact Categ., pp. 1–23, 2016.
[24] D. A. P. Sari, M. Nikmah, and N. A. Sasongko, “Life Cycle Assessment in the Production Process of Crude Palm Oil (Cpo) on Palm Oil Plantation and Mills,” Int. J. GEOMATE, vol. 25, no. 111, pp. 177–184, 2023, doi: 10.21660/2023.111.s8616.
[25] N. P. Sari, “Optimasi Leaching Tandan Kosong Kelapa Sawit Sebagai Bahan Baku Biopellet yang Rendah Mineral,” no. July, pp. 1–23, 2023.
[26] G. A. Norris, “Social impacts in product life cycles: Towards life cycle attribute assessment,” norris, vol. 11, no. SPEC. ISS. 1, pp. 97–104, 2006, doi: 10.1065/lca2006.04.017.