Performance Analysis of the RBF-SOM Network for Iris Data Classification as an Effort to Overcome System Control Problems

##plugins.themes.academic_pro.article.main##

Yoan Elviralita
* Corresponding author: yoan.elviralita@yahoo.com
Asrul Hidayat

Abstract

One way to solve system control problems is by using pattern recognition. Many studies are related to pattern recognition, including artificial neural networks. This study develops an algorithm that combines artificial neural networks with Radial Basis Function (RBF) and Self-Organizing Maps (SOM). The proposed RBF-SOM algorithm was successfully realized with the MATLAB routine program and tested with the case of iris data recognition. The results of the recognition rate show that the developed artificial neural network has a good performance with an average of 98%. 


Salah satu upaya dalam menyelesaikan permasalahan pengendalian system adalah dengan melakukan pengenalan pola. Banyak penelitian yang terkait dengan pengenalan pola diantaranya dengan jaringan syaraf tiruan. Penelitian ini mengembangkan sebuah algoritma perpaduan antara jaringan saraf tiruan Radial Basis Function (RBF) dan Self-Organizing Maps (SOM). Algoritma RBF-SOM ini berhasil direalisasikan dengan program MATLAB dan diuji dengan kasus pengenalan data bunga iris. Hasil recognition rate menunjukkan bahwa jaringan saraf tiruan yang dikembangkan tersebut memiliki performa yang baik dengan rata-rata sebesar 98 %.

##plugins.themes.academic_pro.article.details##

How to Cite
Elviralita, Y., & Hidayat, A. (2022). Performance Analysis of the RBF-SOM Network for Iris Data Classification as an Effort to Overcome System Control Problems. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 4(1), 45-54. https://doi.org/10.46574/motivection.v4i1.104

References

[1] G. Dewantoro and J. N. Sukamto, ‘Implementasi Kendali PID Menggunakan Jaringan Syaraf Tiruan Backpropagation’, ELKHA, vol. 11, no. 1, p. 12, Apr. 2019, doi: 10.26418/elkha.v11i1.29959.
[2] L. Widaningrum, B. Setiyono, and M. A. Riyadi, ‘PERANCANGAN KONTROLER JARINGAN SYARAF TIRUAN B-SPLINE BERBASIS MIKROKONTROLER ATMEGA16 SEBAGAI KENDALI KECEPATAN MOTOR BRUSHLESS DC (BLDC)’, Transient, vol. 6, no. 3, p. 373, Nov. 2017, doi: 10.14710/transient.6.3.373-379.
[3] M. Azmi, D. S. Putra, W. Purwanto, T. Sugiarto, and D. Fernandez, ‘Implementasi Jaringan Syaraf Tiruan untuk Mengendalikan Lampu Sein Sepeda Motor’, 1, vol. 19, no. 2, Art. no. 2, Oct. 2019, doi: 10.24036/invotek.v19i2.622.
[4] D. S. Putra, ‘Pemodelan Sistem dengan Metode Neural Network Back Propagation Modeling System Using Neural Network Backpropagation’, Jurnal Ilmiah Poli Rekayasa, vol. 11, no. 2, pp. 22–31, 2016.
[5] E. Anderson, ‘The Species Problem in Iris’, Annals of the Missouri Botanical Garden, vol. 23, no. 3, pp. 457–509, 1936, doi: 10.2307/2394164.
[6] ‘MathWorks - Makers of MATLAB and Simulink’. https://www.mathworks.com/ (accessed Feb. 25, 2022).
[7] S. Aisyah, M. Harahap, A. Dharma, and M. Turnip, ‘Implementation artificial neural network nguyen widrow algorithm for lupus prediction’, J. Phys.: Conf. Ser., vol. 1361, no. 1, p. 012067, Nov. 2019, doi: 10.1088/1742-6596/1361/1/012067.
[8] R. Damanik, ‘Analisis Penggunaan Algoritma Nguyen Widrow Dalam Backpropagation pada Penyakit Ginjal’, 2013, Accessed: Feb. 25, 2022. [Online]. Available: https://repositori.usu.ac.id/handle/123456789/43010
[9] I. Hakim, S. Efendi, and P. Sirait, ‘Optimization of the Backpropagation Method with Nguyen-widrow in Face Image Classification’, Randwick International of Social Science Journal, vol. 2, no. 2, Art. no. 2, Apr. 2021, doi: 10.47175/rissj.v2i2.226.
[10] E. Kurniawan, H. Wibawanto, and D. A. Widodo, ‘Implementasi Metode Backpropogation dengan Inisialisasi Bobot Nguyen Widrow untuk Peramalan Harga Saham’, Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 1, Art. no. 1, Jan. 2019, doi: 10.25126/jtiik.201961904.
[11] Rosmaliati, N. E. Setiawati, M. H. Purnomo, and A. Priyadi, ‘Nguyen-Widrow Neural Network for Distribution Transformer Lifetime Prediction’, in 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), Nov. 2018, pp. 305–310. doi: 10.1109/CENIM.2018.8710815.
[12] M. R. Wayahdi, M. Zarlis, and P. H. Putra, ‘Initialization of the Nguyen-widrow and Kohonen Algorithm on the Backpropagation Method in the Classifying Process of Temperature Data in Medan’, J. Phys.: Conf. Ser., vol. 1235, no. 1, p. 012031, Jun. 2019, doi: 10.1088/1742-6596/1235/1/012031.