Ceramic Armor as Protective Material in Defense Industry Product: A Literature Review

##plugins.themes.academic_pro.article.main##

Ary Lestari
* Corresponding author: ary.lestari@tp.idu.ac.id
Leni Tria Melati
Kasim Kasim
Jupriyanto Jupriyanto
George Royke Deksino

Abstract

Ceramics are currently widely used in various defense industries. Among them are the purposes of body armor (vests and helmets), vehicle protection, and ballistic protection. This review aims to provide insight into ceramic armor materials including their manufacture, use, and application as protective materials. The method used is a literature review and describes the results of the analysis related to the application of ceramic materials in the form of ceramic armor. The use of ceramic armor materials in defense industry products is proven to provide good performance compared to metal materials, especially in increasing the mobility capabilities of defense personnel. In addition, the use of ceramic armor has initiated the development of lightweight protective materials so that various technologies have been developed to maximize the use of ceramics in the defense industry.


Keramik saat ini banyak digunakan dalam berbagai industri pertahanan. Diantaranya untuk keperluan bahan pelindung tubuh (rompi dan helm), pelindung kendaraan, dan pelindung balistik. Review ini bertujuan untuk memberikan wawasan tentang material armor keramik yang meliputi pembuatan, penggunaan, dan aplikasinya sebagai bahan pelindung. Metode yang digunakan adalah literatur review dan mendeskripsikan hasil analisa terkait aplikasi material keramik dalam bentuk ceramic armor. Pemanfaatan material armor keramik pada produk industri pertahanan terbukti dapat memberikan performa yang baik dibandingkan dengan material logam terutama dalam meningkatkan kemampuan mobilitas dari personil pertahanan. Selain itu penggunaan armor keramik telah menginisiasi pengembangan material pelindung ringan sehingga berbagai macam teknologi dikembangkan untuk dapat memaksimalkan penggunaan keramik dalam industri pertahanan.

##plugins.themes.academic_pro.article.details##

How to Cite
Lestari, A., Melati, L., Kasim, K., Jupriyanto, J., & Deksino, G. (2022). Ceramic Armor as Protective Material in Defense Industry Product: A Literature Review. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 5(1), 101-112. https://doi.org/10.46574/motivection.v5i1.175

References

[1] Kementerian Pertahanan, Peraturan Menteri Pertahanan Republik Indonesia No. 12 Tahun 2014 Tentang Pokok-Pokok Pembinaan Materiil Pertahanan Negara Di Lingkungan Kementerian Pertahanan dan Tentara Nasional Indonesia, 2014.
[2] Guire, D. E., “Atoms to Armor - Army Invests in New Basic Research to Design New Materials,” Am. Ceram. Soc. Bull., Vol. 92, no. 2, pp. 26–31, 2013
[3] Matchen, B., “Applications of ceramics in armor products,” Key Engineering Materials. 12(2), pp. 333-344, 1996.
[4] Gooch, W. A., “Overview Of The Development Of Ceramic Armour Technology: Past, Present And The Future,” Ceramic Engineering and Science Proceedings. 32(5), pp. 195-213, 2011.
[5] Curtis A. Martin, “Lightweight ballistic armor including non-ceramic-infiltrated reaction-bonded-ceramic composite material”, 2008.
[6] Nindha, T. G. T., “Pengetahuan Material Teknik II Polimer, Keramik, Komposit,” Universitas Udayana, Bali, 2018.
[7] Leo, S., Tallon, C., Stone, N., & Franks, G. V., “Near‐net‐shaping methods for ceramic elements of (body) armor systems,” Journal of the American Ceramic Society, 97(10), pp. 3013-3033, 2018.
[8] Rahayu, Titik, et al. "Teknik Menulis Review Literatur Dalam Sebuah Artikel Ilmiah.", 2019.
[9] Afrianto, Irawan. "Psta 4-5-literatur Review Dan Lampirannya.", 2020.
[10] Boch, P., & Ni, J. C. (Eds.), “Ceramic materials: Processes, properties, and applications (Vol. 98)”. John Wiley & Sons, 2010.
[11] Keramik, A. P., “Development, Characteristics and Prospects,” Jurnal Keramik dan Gelas Indonesia, Vol. 27(1), pp. 26-39, 2018.
[12] Anggono, Juliana, et al., “Penyusutan dan Densifikasi Keramik Alumina: Perbandingan Antara Hasil Proses Slip Casting dengan Reaction Bonding,” 2008.
[13] Budiyanto, Eko, “Pengujian Material”, Laduny Alifatama, 2020.
[14] Zainul, R., “Kimia Material,” Berkah Prima, Padang, 2021.
[15] Perdana, Wawan E., “Pembuatan Spesimen Uji Impact Berbahan Aluminium Dengan Teknik Metalurgi Serbuk,” 2020.
[16] Lorraine F. Francis, “Materials Processing,” 2016
[17] Tijjani, Yusuf, "Mechanical and Thermal Properties of CNT-Reinforced Quartzite Nano-Composite for Furnace Lining," 2018.
[18] Anwar, Ma’ruf, and Mulyadi Purnawanto Agus, "Pembuatan Membran Keramik Dari Zeolit Alam dan Tanah Liat dan Aplikasinya," 2019.
[19] Yuan, Lei, et al., "Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process," Ceramics International, 43(7), pp. 5478-5483, 2017.
[20] Naviroj, Maninpat, Peter W. Voorhees, and Katherine T. Faber, "Suspension-and solution-based freeze casting for porous ceramics," Journal of Materials Research, 32(17), pp. 3372-3382, 2017.
[21] Sadek, H. E. H., et al, "Utilization of granite sludge for production of cordierite ceramics by direct coagulation casting," Ceramics International, 47(14), pp. 20187-20195, 2021.
[22] Leo, Silvia, et al, "Near‐net‐shaping methods for ceramic elements of (body) armor systems," Journal of the American Ceramic Society, pp. 3013-3033, 2014.
[23] Zhao, Lei, et al., "Ballistic behaviors of injection-molded honeycomb composite," Journal of Materials Science,pp. 14287-14298, 2018.
[24] Matchen, B., "Applications of ceramics in armor products," Key Engineering Materials. Vol. 122. Trans Tech Publications Ltd, 1996.
[25] Gooch, W. A., “An overview of ceramic armor applications,” Ceramic transactions, 13(4), pp. 3-21, 2002.
[26] Bao, Y., Gao, X., Wu, Y., Sun, M., & Li, G., “Research Progress of Armor Protection Materials,” Journal of Physics: Conference Series. 1855 (1), 2021.
[27] Yang, M., & Qiao, P., “High energy absorbing materials for blast resistant design,” Blast Protection of Civil Infrastructures and Vehicles Using Composites (pp. 88-119). Woodhead Publishing, 2010.
[28] Karandikar, P. G., Evans, G., Wong, S., Aghajanian, M. K., & Sennett, M., “A review of ceramics for armor applications,” Advances in Ceramic Armor IV, 29, PP. 163-175, 2009.
[29] Mehara, M., Goswami, C., Kumar, S. R., Singh, G., & Wagdre, M. K., “Performance evaluation of advanced armor materials,” Materials Today: Proceedings, 47, pp. 6039-6042, 2021.
[30] Holmquist, T. J., Templeton, D. W., & Bishnoi, K. D., “A ceramic armor material database,” Tacom Research Development And Engineering Center Warren Mi, 1999.
[31] Rahbek, D. B., & Johnsen, B., “Dynamic behaviour of ceramic armour systems., 2015.
[32] Ślęzak, T., “Employment of the new advanced structural materials in the military vehicles and heavy equipment,” Challenges to national defence in contemporary geopolitical situation, (1), pp. 32-39, 2018.
[33] Department of Justice. 2008. Ballistic Resistance of Body Armor, NIJ Standard–0101.06. Available online at http://www.ncjrs.gov/pdffiles1/nij/223054.pdf. Last accessed April 15, 2011.
[34] DoD Testing Requirements for Body Armor. Report No. D-2009-047, January 29. Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA499208&Location=U2&doc=GetTRDoc.pdf. Last accessed April 29, 2011.
[35] Christopher Hoppel, Chief, High Rate Mechanics and Failure Branch, Army Research Laboratory, “Multi-scale modeling of armor materials,” presentation to the committee, March 10, 2010.