Calibration of Arduino-based Temperature Sensors for Parabolic Solar Collectors with Phase Change Material

##plugins.themes.academic_pro.article.main##

Ahmadi Ahmadi
Adi Setiawan
* Corresponding author: adis@unimal.ac.id
Gunawati Gunawati
Rozanna Dewi

Abstract

The development of energy storage materials requires facilities for testing the materials' ability to store and release energy effectively. This study focuses on the development and calibration of a temperature measurement system for parabolic solar collectors equipped with heat storage media. We employed type-K thermocouples and MAX6675 modules with Arduino as our measurement tools. The calibration process involved comparing sensor measurements with those obtained from commercially calibrated instruments using seven different test materials. The calibration results demonstrated that our sensors exhibited an error rate ranging from 0.66 to 0.73, indicating their accuracy and suitability for monitoring temperature fluctuations in solar thermal collectors.


Pengembangan material penyimpan energi thermal membutuhkan sarana untuk uji coba kemampuan bahan dalam menyimpan dan melepaskan energi. Penelitian ini fokus pada pengembangan dan kalibrasi sistem pengukuran temperatur untuk kolektor surya parabola yang memiliki media penyimpanan panas. Kami menggunakan sensor termokopel tipe-K dan modul MAX6675 dengan Arduino sebagai alat pengukuran. Proses kalibrasi melibatkan perbandingan hasil pengukuran sensor dengan alat komersil yang sudah terkalibrasi pada tujuh bahan uji yang berbeda. Hasil kalibrasi menunjukkan bahwa sensor kami memiliki tingkat kesalahan antara 0.66 hingga 0.73, menunjukkan bahwa sensor kami sudah akurat dan dapat digunakan untuk memonitor perubahan suhu pada kolektor surya termal.

##plugins.themes.academic_pro.article.details##

How to Cite
Ahmadi, A., Setiawan, A., Gunawati, G., & Dewi, R. (2023). Calibration of Arduino-based Temperature Sensors for Parabolic Solar Collectors with Phase Change Material. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 5(3), 547-556. https://doi.org/10.46574/motivection.v5i3.220

References

[1] N. A. Lutsenko and S. S. F. A, “Effect of side walls shape on charging and discharging performance of thermal energy storages based on granular phase change materials,” Reneweable Energy, vol. 162, pp. 1–12, 2020, doi: https://doi.org/10.1016/j.renene.2020.08.029.
[2] D. Risky, M. Yusuf, and A. Setiawan, “Preliminary study on the use of solar energy to drive biomass briquetting machines,” J. Polimesin, vol. 18, no. 2, pp. 144–150, 2020.
[3] R. Syarlian, A. Abizar, and A. Setiawan, “Preliminary design of shrimp pond paddle wheel powered by solar energy,” J. Polimesin, vol. 19, no. 1, pp. 1–6, 2021.
[4] N. Goyal, A. Aggarwal, and A. Kumar, “Financial feasibility of concentrated solar power with and without sensible heat storage in hot and dry Indian climate,” J. Energy Storage, vol. 52, p. 105002, Aug. 2022, doi: 10.1016/J.EST.2022.105002.
[5] S. M.K and R. K.S., “Thermal energy storage system with a high-temperature nanoparticle enhanced phase change material: Charging and discharging characteristics upon integration with process preheating,” J. Energy Storage, vol. 55, pp. 1–10, 2022, doi: https://doi.org/10.1016/j.est.2022.105295.
[6] A. Anand, A. Shukla, and A. Sharma, Thermal Energy Storage Using Phase Change Materials: An Overview. 2020. doi: 10.1201/9780429328640-1.
[7] G. Gunawati et al., “Physical Characteristics of Aceh Traditional Salt and Its Potential as Raw Material for Thermal Energy Storage,” J. Ecol. Eng., vol. 23, no. 2, pp. 116–122, 2022.
[8] I. K. G. W. I. M. Astika, I. N. S. Winaya, I. D. G. A. Subagia and I. G. K. D. I. G. N. Nitya Santhiarsa, I. K. Suarsana, I. G. N. Priambadi, “Phase Change Materials for Building Applications: A Review,” in Prosiding SNTTM XVIII, 2019, vol. RM05, pp. 1–10. doi: 10.1016/j.enbuild.2010.03.026.
[9] R. Senthil and M. Cheralathan, “Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials,” J. Energy Storage, vol. 25, no. June, p. 100841, 2019, doi: 10.1016/j.est.2019.100841.
[10] B. Koçak, A. I. Fernandez, and H. Paksoy, “Review on sensible thermal energy storage for industrial solar applications and sustainability aspects,” Sol. Energy, vol. 209, no. August, pp. 135–169, 2020, doi: 10.1016/j.solener.2020.08.081.
[11] S. Riskina, A. Setiawan, G. Gunawati, and R. Dewi, “Design of concentrated solar thermal powered heat exchanger completed with energy storage material,” AIP Conf. Proc., vol. 2719, no. 1, p. 50002, 2023, doi: 10.1063/5.0133276.
[12] P. Itterheimová, F. Foret, and P. Kubáň, “High-resolution Arduino-based data acquisition devices for microscale separation systems,” Anal. Chim. Acta, vol. 1153, p. 338294, 2021, doi: https://doi.org/10.1016/j.aca.2021.338294.
[13] R. Septiana, I. Roihan, and J. Karnadi, “Calibration of K-Type Thermocouple and MAX6675 Module With Reference DS18B20 Thermistor Based on Arduino DAQ,” Pros. SNTTM XVIII, pp. 9–10, 2019.
[14] A. Hasibuan, R. Rosdiana, and D. S. Tambunan, “Design and Development of An Automatic Door Gate Based on Internet of Things Using Arduino Uno,” Bull. Comput. Sci. Electr. Eng., vol. 2, no. 1 SE-Articles, pp. 17–27, Jun. 2021, doi: 10.25008/bcsee.v2i1.1141.
[15] M. Gunawati. Nasruddin, M.N. Setiawan, Adi. Sebayang, K.A. Zakaria, “Design and Calibration of Temperature Monitoring Device for a Cold Box with Hydrated Salts as Phase Change Material (PCM),” in Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering, 2021. doi: https://doi.org/10.1007/978-981-16-0736-3_20.
[16] A. Hasibuan, Kartika, A. Qodri, and M. Isa, “Temperature Monitoring System using Arduino Uno and Smartphone Application,” Bull. Comput. Sci. Electr. Eng., vol. 2, no. 2 SE-Articles, pp. 46–55, Dec. 2021, doi: 10.25008/bcsee.v2i2.1139.
[17] P. F. Pereira and N. M. M. Ramos, “Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments,” J. Build. Eng., vol. 60, no. June, p. 105151, 2022, doi: 10.1016/j.jobe.2022.105151.
[18] R. Septiana, I. Roihan, and R. A. Koestoer, “Testing a calibration method for temperature sensors in different working fluids,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 68, no. 2, pp. 84–93, 2020, doi: 10.37934/ARFMTS.68.2.8493.
[19] S. Zhao, J. Zhou, Y. Liu, J. Zhang, and J. Cui, “Application of Adaptive Filtering Based on Variational Mode Decomposition for High-Temperature Electromagnetic Acoustic Transducer Denoising.,” Sensors (Basel)., vol. 22, no. 18, Sep. 2022, doi: 10.3390/s22187042.
[20] M. A. Rehan et al., “Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions,” Renew. Energy, vol. 118, pp. 742–751, 2018, doi: 10.1016/j.renene.2017.11.062.
[21] A. Caraballo, S. Galán-Casado, Á. Caballero, and S. Serena, “Molten salts for sensible thermal energy storage: A review and an energy performance analysis,” Energies, vol. 14, no. 4, pp. 1–15, 2021, doi: 10.3390/en14041197.
[22] B. O. Olorunfemi, N. I. Nwulu, and O. A. Ogbolumani, “Solar panel surface dirt detection and removal based on arduino color recognition,” MethodsX, vol. 10, no. December 2022, p. 101967, 2023, doi: 10.1016/j.mex.2022.101967.