Experimental of Quadcopter Trajectory Tracking Control Based ROS

##plugins.themes.academic_pro.article.main##

Pipit Angraeni
* Corresponding author: pipit_anggraeni@polman-bandung.ac.id
Muhammad Nursyam Rizal
Hilda Khoirunnisa
Theo Kristian

Abstract

Quadcopters have become popular in various fields, such as environmental surveying, mapping, monitoring, and rescue operations. However, controlling the trajectory of a quadcopter remains a major challenge. In this article, we propose an adaptive PID control approach based on ROS (Robot Operating System) to control the motion of a quadcopter. We tested the proposed control model on a simulation platform and on a physical quadcopter system. Simulation results demonstrate better control capabilities than conventional PID control approaches. Additionally, the proposed control system successfully controlled the quadcopter accurately on multiple different trajectories in the physical system. We demonstrate the effectiveness of the adaptive PID control approach in tracking the quadcopter's trajectory with greater accuracy. Experiment results show that the proposed control system is highly suitable for more advanced quadcopter applications and allows for more accurate navigation.


Quadcopter telah menjadi populer dalam aplikasi berbagai bidang, seperti survei lingkungan, pemetaan, pemantauan dan penyelamatan. Namun, pengendalian trajektori quadcopter masih menjadi tantangan besar. Dalam artikel ini, kami mengusulkan pendekatan kontrol pid adaptif berbasis ROS (Robot Operating System) untuk mengendalikan gerakan quadcopter. Kami menguji model kontrol yang diusulkan pada platform simulasi dan pada sistem fisik quadcopter. Hasil simulasi menunjukkan kemampuan kontrol yang lebih baik dari pendekatan kontrol pid konvensional. Selain itu, sistem kontrol yang diusulkan berhasil mengendalikan quadcopter pada beberapa lintasan berbeda secara akurat pada sistem fisik. Kami menunjukkan efektivitas pendekatan kontrol pid adaptif dalam melacak lintasan quadcopter dengan akurasi yang lebih baik. Hasil eksperimen menunjukkan bahwa sistem kontrol yang diusulkan sangat mampu digunakan pada aplikasi quadcopter yang lebih canggih dan memungkinkan navigasi yang lebih akurat.

##plugins.themes.academic_pro.article.details##

How to Cite
Angraeni, P., Rizal, M., Khoirunnisa, H., & Kristian, T. (2023). Experimental of Quadcopter Trajectory Tracking Control Based ROS. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 5(2), 295-302. https://doi.org/10.46574/motivection.v5i2.232

References

[1] A. Hentout, M. Aouache, A. Maoudj, & I. Akli, "Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017", Advanced Robotics, 33(15-16), 764-799, 2019
[2] A. Zacharaki, I. Kostavelis, A. Gasteratos, & I. Dokas, "Safety bounds in human robot interaction: A survey", Safety science, 127, 104667, 2020.
[3] A. Henschel, R. Hortensius, & E. S. Cross, "Social cognition in the age of human–robot interaction", Trends in Neurosciences, 43(6), 373-384, 2020.
[4] S. H. W. Chuah, & J. Yu, "The future of service: The power of emotion in human-robot interaction", Journal of Retailing and Consumer Services, 61, 102551, 2021.
[5] M. Farouk, "Studying Human Robot Interaction and Its Characteristics", International Journal of Computations, Information and Manufacturing (IJCIM), 2(1), 2022.
[6] Z. Jiangpeng, C. Haiyan, H. Liwen, & H. Yong, "Development and performance evaluation of a multi-rotor unmanned aircraft system for agricultural monitoring", Smart Agriculture, 1(1), 43, 2019.
[7] G. M. Williams, Y. Wang, D. S. Suman, I. Unlu, & R. Gaugler, "The development of autonomous unmanned aircraft systems for mosquito control". PloS one, 15(9), e0235548, 2020.
[8] V. Kangunde, R. S. Jamisola, & E. K. Theophilus, "A review on drones controlled in real-time", International journal of dynamics and control, 1-15, 2021.
[9] M. Ayamga, S. Akaba, & A. A. Nyaaba, "Multifaceted applicability of drones: A review", Technological Forecasting and Social Change, 167, 120677, 2021.
[10] Y. Zhi, Z. Fu, X. Sun, & J. Yu, "Security and privacy issues of UAV: a survey", Mobile Networks and Applications, 25, 95-101, 2020.
[11] A. Sharma, P. Vanjani, N. Paliwal, C. M. W. Basnayaka, D. N. K. Jayakody, H. C. Wang, & P. Muthuchidambaranathan, "Communication and networking technologies for UAVs: A survey", Journal of Network and Computer Applications, 168, 102739, 2020.
[12] W. Saad, M. Bennis, M. M, and X. L, Wireless Communications and Networking for Unmanned Aerial Vehicles, First Publ., vol. First Publ. United Kindom: Cambridge University, 2020.
[13] D. C. Tsouros, S. Bibi, & P. G. Sarigiannidis, "A review on UAV-based applications for precision agriculture". Information, 10(11), 349, 2019.
[14] A. Rasyid, P. Pangaribuan, & R. Nugraha, "Rancang Bangun Dan Implementasi Path Builder Pada Quadcopter", eProceedings of Engineering, 3(3), 2016.