Design of Remote Monitoring Application on Non-Rechargeable Battery Redundant System

##plugins.themes.academic_pro.article.main##

Wahyudi Purnomo
Wahyu Adhie Candra
Gabriel Muhammad Manuel
* Corresponding author: gamma.gabriel.m@gmail.com

Abstract

In this era of continuously evolving technology, remote monitoring has emerged as an innovative and effective solution for monitoring and managing remote areas. Design of Remote Monitoring on Non-Rechargeable Battery Redundant System proposes an improved system for multi-point to point remote monitoring, battery redundant, and communication. The study investigated the accuracy of INA219 sensor readings on the battery, the Quality of Service (QoS) of the Message Queuing Telemetry Transport (MQTT) communication protocol from multiple devices based on the TIPHON standard, and the utilization of a High-Side Bootstrap circuit for the battery redundant system. The results indicate that the INA219 sensor shows an average error of 0.64% - 1.04% for voltage and 1.17% - 2.45% for current. Quality of Service testing revealed an average delay of 40.9 - 119.7 ms with 0% packet loss, thus meeting the excellent standard. Bootstrap High-Side circuit efficiency average from all devices are 99.35% for input and 95.9% for output. Lastly, the redundant system by utilizing Bootstrap High-Side circuit achieved a 100% success rate for all devices, confirming the successful design implementation.

##plugins.themes.academic_pro.article.details##

How to Cite
Purnomo, W., Candra, W., & Manuel, G. (2023). Design of Remote Monitoring Application on Non-Rechargeable Battery Redundant System. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 5(3), 447-460. https://doi.org/10.46574/motivection.v5i3.247

References

[1] F. Capraro, S. Tosetti, F. Rossomando, V. Mut, and F. Vita Serman, “Web-based system for the remote monitoring and management of precision irrigation: A case study in an arid region of Argentina,” Sensors, vol. 18, no. 11, p. 3847, 2018, doi: 10.3390/s18113847.
[2] P. S. Priambodo, W. Purnomo, A. Subiantoro, A. Muis, and F. Yusivar, “Transformerless high voltage and controllable current battery charger for e-car,” presented at the 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T), IEEE, 2013, pp. 1–4. doi: 10.1109/rICT-ICeVT.2013.6741492.
[3] W. Sanjula, K. Kavinda, M. Malintha, W. Wijesuriya, S. Lokuliyana, and R. de Silva, “Automated water-gate controlling system for Paddy fields,” presented at the 2020 2nd International Conference on Advancements in Computing (ICAC), IEEE, 2020, pp. 61–66. doi: 10.1109/ICAC51239.2020.9357312.
[4] S. Aminah, A. D. Mulyadi, and Y. Erdani, “The Wireless Acquisition Data System Simulator Design on Automatic Weather Monitoring Station,” Motiv. J. Mech. Electr. Ind. Eng., vol. 1, no. 3, Art. no. 3, Sep. 2019, doi: 10.46574/motivection.v1i3.33.
[5] F. Amaluddin and A. Haryoko, “Analisa Sensor Suhu Dan Tekanan Udara Terhadap Ketinggian Air Laut Berbasis Mikrokontroler,” Antivirus J. Ilm. Tek. Inform., vol. 13, no. 2, pp. 98–104, 2019, doi: 10.35457/antivirus.v13i2.843.
[6] S. Shapsough, M. Takrouri, R. Dhaouadi, and I. Zualkernan, “An MQTT-Based Scalable Architecture for Remote Monitoring and Control of Large-Scale Solar Photovoltaic Systems,” in Smart Grid and Internet of Things, A.-S. K. Pathan, Z. Md. Fadlullah, and M. Guerroumi, Eds., in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer International Publishing, 2019, pp. 57–67. doi: 10.1007/978-3-030-05928-6_6.
[7] N. Poma et al., “Remote monitoring of seawater temperature and pH by low cost sensors,” Microchem. J., vol. 148, pp. 248–252, 2019, doi: 10.1016/j.microc.2019.05.001.
[8] F. Salahudin and B. Setiyono, “Design of Remote Terminal Unit (RTU) Panel Supply Monitoring Based on IOT Case Study at PLN,” presented at the 2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), IEEE, 2019, pp. 1–6.
[9] Z. B. Abilovani, W. Yahya, and F. A. Bakhtiar, “Implementasi Protokol MQTT Untuk Sistem Monitoring Perangkat IoT,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput. E-ISSN, pp. 7521–7527, 2018.
[10] P. Anggraeni, W. A. Candra, M. Defoort, and M. Djemai, “Experimental implementation of fixed-time leader-follower axial alignment tracking,” presented at the 2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), IEEE, 2019, pp. 86–91. doi: 10.1109/MoRSE48060.2019.8998638.
[11] V. Barot, V. Kapadia, and S. Pandya, “QoS enabled IoT based low cost air quality monitoring system with power consumption optimization,” Cybern. Inf. Technol., vol. 20, no. 2, pp. 122–140, 2020, doi: 10.2478/cait-2020-0021.
[12] A. A. Mukhlisin, S. Suhanto, and L. S. Moonlight, “Rancang Bangun Kontrol Dan Monitoring Baterai Uninterruptible Power Supply (Ups) Menggunakan Energi Hybrid Dengan Konsep Internet Of Thing (IOT),” presented at the Prosiding SNITP (Seminar Nasional Inovasi Teknologi Penerbangan), 2019.
[13] M. U. Mehmood, W. Ali, A. Ulasyar, H. S. Zad, A. Khattak, and K. Imran, “A Low Cost Internet of Things (LCIoT) Based System for Monitoring and Control of UPS System using Node-Red, CloudMQTT and IBM Bluemix,” presented at the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), IEEE, 2019, pp. 1–5. doi: 10.1109/ICECCE47252.2019.8940686.
[14] F. Suryatini, W. Purnomo, and R. R. Harlanti, “Sistem kendali penyemaian bersusun pada tanaman hidroponik berbasis logika fuzzy Tsukamoto dengan aplikasi Blynk: A tiered seeding control system for hydroponic plants based on Tsukamoto’s fuzzy logic with the Blynk application,” JITEL J. Ilm. Telekomun. Elektron. Dan List. Tenaga, vol. 3, no. 1, pp. 37–46, 2023, doi: 10.35313/jitel.v3.i1.2023.37-46.
[15] A. Jothivelu and S. P. Simon, “A Smart BTS/Node B Network Monitoring and Control using IoT,” presented at the 2019 Fifteenth International Conference on Information Processing (ICINPRO), IEEE, 2019, pp. 1–5. doi: 10.1109/ICInPro47689.2019.9092317.
[16] W. A. Candra, A. S. Sunarya, and W. S. Saraswati, “Computer Vision Implementation in Scratch Inspection and Color Detection on The Car Roof Surface,” Motiv. J. Mech. Electr. Ind. Eng., vol. 5, no. 2, Art. no. 2, Apr. 2023, doi: 10.46574/motivection.v5i2.230.
[17] R. Subektiningsih and P. Ferdiansyah, “Analisis Perbandingan Parameter QoS Standar TIPHON Pada Jaringan Nirkabel Dalam Penerapan Metode PCQ,” Explore, vol. 12, no. 1, pp. 57–63, 2022, doi: 10.35200/explore.v12i1.527.
[18] M. Mungkin, H. Satria, J. Yanti, G. B. A. Turnip, and S. Suwarno, “Perancangan Sistem Pemantauan Panel Surya Pollycristalline Menggunakan Teknologi Web Firebase Berbasis IoT,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 319–327, Dec. 2020, doi: 10.31539/intecoms.v3i2.1861.
[19] S. Pramono, S. Indriyanto, and W. Junianto, “The Implementation of MQTT Protocol using PT-100 for Monitoring the Vaccine Temperature,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 6, pp. 346–351, Apr. 2022, doi: 10.29207/resti.v6i2.3988.
[20] Y. Mahaseng, M. Masarrang, Y. Arifin, M. Mustofa, and S. Dewi, “RANCANG BANGUN PANEL AUTOMATIC TRANSFER SWITCH (ATS) BERBASIS PHOTOVOLTAIC,” Foristek, vol. 12, no. 1, Art. no. 1, Jun. 2022, doi: 10.54757/fs.v12i1.140.