Experimental Study of Air-Water Heat Exchanger as a Passive Coolant in Air Vents
##plugins.themes.academic_pro.article.main##
Abstract
Indonesia, a tropical climate country, has experienced a notable increase in temperatures during the dry season due to global warming, leading to decreased thermal comfort. This experimental study aims to investigate and analyze the performance of an air-water heat exchanger serving as a passive cooler in tropical ventilation systems. Before being introduced into the room, the hot outdoor air is passively cooled by colder water. Air, propelled by an inline duct fan at a constant speed of 9.6 meters per second, passes through a PVC hose integrated into a tube filled with water measuring 100 cm in diameter and 110 cm in height, which serves as the main heat exchanger. Measurement results indicate that the designed air-water heat exchanger provides a significant passive cooling effect, reducing air temperature by up to 6.83°C. By harnessing passive cooling, the cooling capacity achieved during the measurement period in the ventilation system ranges from 3.08 kJ to 7.67 kJ.
Indonesia, yang memiliki iklim tropis, mengalami kenaikan suhu yang cukup besar selama musim kemarau akibat pemanasan global, sehingga mengurangi kenyamanan termal. Penelitian eksperimental ini bertujuan untuk menguji dan menganalisis kinerja alat penukar panas udara-air yang berfungsi sebagai pendingin pasif dalam sistem ventilasi di daerah tropis. Sebelum masuk ke dalam ruangan, udara panas dari luar didinginkan secara pasif oleh air yang lebih dingin. Udara yang didorong oleh kipas saluran udara dengan kecepatan tetap sebesar 9,6 meter per detik melewati selang PVC yang terhubung dengan tabung berisi air berdiameter 100 cm dan tinggi 110 cm, yang berperan sebagai penukar panas utama. Hasil pengukuran menunjukkan bahwa penukar panas udara-air yang dirancang memberikan efek pendinginan pasif yang signifikan, mengurangi suhu udara hingga 6,83 °C. Dengan memanfaatkan pendinginan pasif, kapasitas pendinginan yang dicapai selama periode pengukuran dalam sistem ventilasi berkisar antara 3,08 kJ hingga 7,67 kJ.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Rafi Rahmat Ichsan, Remon Lapisa, Primawati Primawati, Budi Syahri (2023)References
[2] E. A. Giofandi, “Persebaran Fenomena Suhu Tinggi melalui Kerapatan Vegetasi dan Pertumbuhan Bangunan serta Distribusi Suhu Permukaan,” J. Geogr. Media Inf. Pengemb. dan Profesi Kegeografian, vol. 17, no. 2, pp. 56–62, 2020, doi: 10.15294/jg.v17i2.24486.
[3] T. Ahmed, P. Kumar, and L. Mottet, “Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality,” Renew. Sustain. Energy Rev., vol. 138, no. May 2020, p. 110669, 2021, doi: 10.1016/j.rser.2020.110669.
[4] R. Pratama and L. Parinduri, “Penganggulangan Pemanasan Global,” Cetak) Bul. Utama Tek., vol. 15, no. 1, pp. 91–95, 2019.
[5] I. Saputra and A. Mursadin, “Analisis Temperatur Lingkungan Terhadap Kinerja Cooling Tower Di Pt. Indocement Tunggal Prakarsa Tbk. P-12 Tarjun Kalimantan - Selatan,” Jtam Rotary, vol. 3, no. 2, pp. 159–172, 2021, doi: 10.20527/jtam_rotary.v3i2.4140.
[6] R. I. Yaqin et al., “Analisa Perpindahan Panas Heat Exchanger Mesin Induk (Studi Kasus: KM. Sumber Mutiara),” J. Teknol. Terap., vol. 8, no. 1, pp. 53–60, 2022.
[7] C. Ezgi, “Design and thermodynamic analysis of waste heat-driven zeolite–water continuous-adsorption refrigeration and heat pump system for ships,” Energies, vol. 14, no. 3, 2021, doi: 10.3390/en14030699.
[8] S. E. Oster and M. R. Albert, “Thermal conductivity of polar firn,” J. Glaciol., vol. 68, no. 272, pp. 1141–1148, 2022, doi: 10.1017/jog.2022.28.
[9] S. J. Yu, I. G. Ryu, M. J. Park, and J. K. Im, “Long-term relationship between air and water temperatures in Lake Paldang, South Korea,” Environ. Eng. Res., vol. 26, no. 4, pp. 0–3, 2021, doi: 10.4491/eer.2020.177.
[10] L. Larson and P. A. Larson, “The natural heating and cooling of water,” Rangelands, vol. 19, no. 6, pp. 6–8, 1997.
[11] C. Jacobs, L. Klok, M. Bruse, J. Cortesão, S. Lenzholzer, and J. Kluck, “Are urban water bodies really cooling?,” Urban Clim., vol. 32, no. January, p. 100607, 2020, doi: 10.1016/j.uclim.2020.100607.
[12] K. Winardo et al., “PADA BANGUNAN GEDUNG,” vol. 17, no. 2, pp. 122–129, 2023.
[13] R. Elbes and A. S. Munawaroh, “Penilaian kenyamanan termal pada bangunan perpustakaan Universitas Bandar Lampung,” ARTEKS J. Tek. Arsit., vol. 4, no. 1, pp. 85–98, 2019.
[14] “E-Buletin Prakiraan Musim Kemarau Sumatera Barat 2023 - Diseminasi Staklim Padang Pariaman _ PDF Online _ FlipHTML5.PDF.” .
[15] “Suhu Tahunan Kota Padang 2019-2021,” Badan Pus. Stat. Kota Padang, p. https://padangkota.bps.go.id/indicator/153/371/1/s.
[16] E. Estrada, M. Labat, S. Lorente, and L. A. O. Rocha, “The impact of latent heat exchanges on the design of earth air heat exchangers,” Appl. Therm. Eng., vol. 129, pp. 306–317, 2018, doi: 10.1016/j.applthermaleng.2017.10.007.