Thermal Cooling of Solar Panels: Effectiveness of Copper Pipes in Temperature Regulation
##plugins.themes.academic_pro.article.main##
Abstract
This study evaluates the effectiveness of a thermal cooling system utilizing copper pipes in regulating solar panel temperature and enhancing energy efficiency. The system incorporates water-fed copper pipes with an automatic valve mechanism, which controls water flow based on real-time temperature measurements. Experiments were conducted at Universitas Muhammadiyah Sidoarjo using two 100 Wp solar panels, where key parameters such as voltage, current, power output, and surface temperature were monitored. The results demonstrate that the cooling system effectively lowers panel temperature, leading to significant improvements in voltage and power generation. The cooled solar panel achieved a maximum efficiency of 43.7%, compared to only 24.07% without cooling. Additionally, the cooling system stabilized maximum power voltage (VMP) and maximum power output (PMAX), preventing performance degradation due to excessive heat accumulation. These findings confirm that integrating a copper pipe thermal cooling system enhances solar panel efficiency, providing a viable solution for improving photovoltaic energy conversion and ensuring long-term operational stability.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Hanif Ramadhan, Jamaaluddin Jamaaluddin, Akhmad Ahfas, Izza Anshory (2025)References
[2] P. Boedi, “KOCENIN Serial Konferensi No. 1 (2020) Webinar Nasional Cendekiawan Ke 6 Tahun 2020, Indonesia,” KOCENIN Ser. Konf., vol. 1, no. 1, pp. 1–11, 2020.
[3] U. Penghematan, B. I. Tagihan, L. Pln, and U. A. Dahlan, “1) , 2 , 3) , 4),” vol. 2, pp. 236–240, 2024.
[4] P. Harahap, “Pengaruh Temperatur Permukaan Panel Surya Terhadap Daya Yang Dihasilkan Dari Berbagai Jenis Sel Surya,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 2, no. 2, pp. 73–80, 2020, doi: 10.30596/rele.v2i2.4420.
[5] G. R. Cahyono, P. R. Ansyah, and M. Munthaha, “Pengaruh Variasi Kecepatan Hembusan Udara Terhadap Temperatur, Daya Output dan Efisiensi Pada Pendinginan Panel Surya,” Infotekmesin, vol. 11, no. 2, pp. 141–146, 2020, https://doi.org/10.35970/infotekmesin.v11i2.259.
[6] S. Emani, S. K. Vandrangi, G. Velidi, M. H. Ahmadi, Y. Cárdenas Escorcia, and A. Jafet Nieto Pisciotti, “Effects of wavy structure, ambient conditions and solar intensities on flow and temperature distributions in a mini solar flat plate collector using computational fluid dynamics,” Eng. Appl. Comput. Fluid Mech., vol. 17, no. 1, 2023, https://doi.org/10.1080/19942060.2023.2236179.
[7] I. N. Unar et al., “Performance evaluation of solar flat plate collector using different working fluids through computational fluid dynamics,” SN Appl. Sci., vol. 2, no. 2, pp. 1–10, 2020, https://doi.org/10.1007/s42452-020-2005-z.
[8] I. Sulistiyowati, Jamaaludin, and I. Anshory, “Characteristics of Direct-Coupling Fuel Cell Injection in Renewable Energy Hybrid Power Generation Electrical Systems,” Procedia Soc. Sci. Humanit., vol. 3, no. c, pp. 748–756, 2022, https://pssh.umsida.ac.id/index.php/pssh/article/view/110
[9] A. Ahfas, D. R. Hadidjaja, S. Syahrorini, B. Studi Teknik Elektro, and F. Saintek, “Id Card Sebagai Charger Hp Berbasis Energi Terbarukan,” Procedia Soc. Sci. Humanit., vol. 0672, no. c, pp. 1467–1471, 2022, https://pssh.umsida.ac.id/index.php/pssh/article/view/237
[10] J. Jamaaluddin, I. Anshory, S. B. Sartika, Khoiri, and Mardiyono, “Utilizing Solar Power for Communication and Illumination in Disaster Zones,” Acad. Open, vol. 8, no. 2, pp. 1–15, 2023, https://doi.org/10.21070/acopen.8.2023.7236.
[11] I. Anshory et al., “Optimization DC-DC boost converter of BLDC motor drive by solar panel using PID and firefly algorithm,” Results Eng., vol. 21, no. December 2023, p. 101727, 2024, https://doi.org/10.1016/j.rineng.2023.101727.
[12] Z. Arizal, A. Y. Dewi, A. Effendi, and R. Andari, “Analysis of a 735 kWp On-Grid Solar Power Plant System on the Rooftop of the Main Office of PT . Pertamina Hulu Rokan,” vol. 1, no. 3, pp. 93–105, 2025, https://www.seajaet.peare-rc.org/index.php/seajaet/article/view/43
[13] S. H. Kiki, U. Prayogi, and B. Y. Dewantara, “Perancangan Tata Letak Mesin Pendingin dan Instalasi Panel Surya sebagai Supply Daya Sistem Pendingin Ruang Muat Kapal Ikan KM. Jaya Putra,” J. Tek. Elektro Uniba (JTE UNIBA), vol. 7, no. 1, pp. 255–260, 2022, https://doi.org/10.36277/jteuniba.v7i1.163.
[14] A. Pawawoi and Z. Zulfahmi, “Penambahan Sistem Pendingin Heatsink Untuk Optimasi Penggunaan Reflektor Pada Panel Surya,” J. Nas. Tek. Elektro, vol. 8, no. 1, p. 1, 2019, https://doi.org/10.25077/jnte.v8n1.607.2019.
[15] M. S. Loegimin, B. Sumantri, M. A. B. Nugroho, H. Hasnira, and N. A. Windarko, “Sistem Pendinginan Air Untuk Panel Surya Dengan Metode Fuzzy Logic,” J. Integr., vol. 12, no. 1, pp. 21–30, 2020, http://dx.doi.org/10.30871/ji.v12i1.1698.
[16] R. Subarkah and B. Belyamin, “Pemanas Air Energi Surya Dengan Sel Surya Sebagai Absorber,” Poli-Teknologi, vol. 10, no. 3, pp. 225–231, 2021, https://jurnal.pnj.ac.id/index.php/politeknologi/article/view/37
[17] M. Rezki, R. Rusilawati, and I. Irfan, “Optimalisasi Daya Panel Surya Menggunakan Sistem Pendingin Berbasis Air Otomatis,” J. EEICT (Electric Electron. Instrum. Control Telecommun., vol. 6, no. 2, 2023, http://dx.doi.org/10.31602/eeict.v6i2.12921.
[18] M. Zuhairi, Analisis Kondisi Suhu Permukaan Sel Surya Terhadap Fluktuasi Cuaca Berbasis Thermovisi. Universitas Medan Area, 2023, https://repositori.uma.ac.id/handle/123456789/21696
[19] R. Z. Fadillah et al., “Perbandingan Penggunaan Panel Surya dan Turbin Angin dalam Implementasi Energi Baru Terbarukan (EBT) di Lingkungan Universitas Pertamina,” J. Teknol. Lingkung., vol. 22, no. 1, pp. 029–037, 2021, http://dx.doi.org/10.29122/jtl.v22i1.3247.
[20] D. Almanda and B. P. Piliang, “Perbandingan Sistem Pendingin pada Konsentrasi Water Coolant, Air Mineral, dan Air Laut Menggunakan Panel Surya Fleksibel Monocrystaline 20 Wp,” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no. 2, p. 73, 2019, https://doi.org/10.24853/resistor.2.2.73-82.
[21] I. Martati and D. Kusrihandayani, “Kaji Experimental Photovoltaic Thermal (PV/T) Pendingin Panel Surya,” Pros. 4th Semin. Nas. Penelit. Pengabdi. Kpd. Masy. 2020, pp. 124–129, 2020, https://jurnal.poliupg.ac.id/index.php/snp2m/article/view/2430/2142