A Comparative Study of Human Reliability Assessment using Success Likelihood Index Method (SLIM) and Human Error Assessment & Reduction Technique (HEART): A case study from a Boeing 737 Max Accident

##plugins.themes.academic_pro.article.main##

M Zaki Ramdhan
Daffa Abyan Rizq
Ayrton Senna
Adhitya Ryan Ramadhani
* Corresponding author: adhitya.rr@universitaspertamina.ac.id

Abstract

The accurate assessment of Human Error Probability (HEP) is crucial for aviation safety, especially in complex systems such as the Manoeuvring Characteristics Augmentation System (MCAS). This study compares two widely used human reliability analysis methods, HEART (Human Error Assessment and Reduction Technique) and SLIM (Success Likelihood Index Method), to evaluate their effectiveness in identifying and quantifying MCAS-related human errors. The results indicate that HEART is highly sensitive to human and organizational factors, as in Error Mode 5, where the calculated HEP is 0.164. In contrast, SLIM focuses more on system design and interaction reliability, yielding a significantly lower HEP of 0.0049. The comparative analysis highlights the strengths and limitations of each method, suggesting that a hybrid approach could improve the accuracy of human error assessments in aviation, leading to more effective risk mitigation strategies.

##plugins.themes.academic_pro.article.details##

How to Cite
Ramdhan, M. Z., Rizq, D. A., Senna, A., & Ramadhani, A. R. (2025). A Comparative Study of Human Reliability Assessment using Success Likelihood Index Method (SLIM) and Human Error Assessment & Reduction Technique (HEART): A case study from a Boeing 737 Max Accident. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 7(1), 61-74. https://doi.org/10.46574/motivection.v7i1.431

References

[1] E. Poerwanto and U. Mauidzoh, “ANALISIS KECELAKAAN PENERBANGAN DI INDONESIA UNTUK PENINGKATAN KESELAMATAN PENERBANGAN,” Angkasa: Jurnal Ilmiah Bidang Teknologi, vol. 8, no. 2, 2017, doi: 10.28989/angkasa.v8i2.115.
[2] J. Indriani, M. Lestari, N. Novrikasari, and R. F. Nandini, “Analisis Penyebab Kejadian Kecelakaan Pesawat di Indonesia dengan Pendekatan the Shell Model,” Warta Penelitian Perhubungan, vol. 35, no. 1, 2023, doi: 10.25104/warlit.v35i1.2064.
[3] K. N. K. T. (KNKT), “Aircraft Accident Investigation Report: PT. Lion Mentari Airlines, Boeing 737-8 (MAX); PK-LQP,” Jakarta, 2019.
[4] K. Aminatuzzahra and A. Latipulhayat, “RESPONSIBILITIES OF THE STATE AND AIRCRAFT MANUFACTURER ON LION AIR JT610 AND ETHIOPIAN AIRLINES ET302 ACCIDENTS UNDER INTERNATIONAL LAW,” Padjadjaran Journal of International Law, vol. 4, no. 2, 2021, doi: 10.23920/pjil.v4i2.409.
[5] N. T. Curran, T. W. Kennings, and K. G. Shin, “Analysis and Prevention of MCAS-Induced Crashes,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 43, no. 11, pp. 3382–3394, 2024, doi: 10.1109/TCAD.2024.3438105.
[6] G. S. Widagdj, S. C. K. Datu’, and H. Robbani, “Analisis Kasus Kecelakaan Lion Air JT610: Tinjauan Pidana dan Tanggung Jawab Korporasi dalam Keselamatan Penerbangan,” Decisio: Jurnal Ilmiah Hukum, vol. 1, Mar. 2024.
[7] E. Igunza, “Ethiopian Airlines: ‘No survivors’ on crashed Boeing 737,” BBC News.
[8] S. Il Ahn, R. E. Kurt, and O. Turan, “The hybrid method combined STPA and SLIM to assess the reliability of the human interaction system to the emergency shutdown system of LNG ship-to-ship bunkering,” Ocean Engineering, vol. 265, 2022, doi: 10.1016/j.oceaneng.2022.112643.
[9] G. Kayisoglu, P. Bolat, and K. Tam, “Evaluating SLIM-based human error probability for ECDIS cybersecurity in maritime,” Journal of Navigation, vol. 75, no. 6, 2022, doi: 10.1017/S0373463322000534.
[10] B. Navas de Maya, A. Komianos, B. Wood, L. de Wolff, R. E. Kurt, and O. Turan, “A practical application of the Hierarchical Task Analysis (HTA) and Human Error Assessment and Reduction Technique (HEART) to identify the major errors with mitigating actions taken after fire detection onboard passenger vessels,” Ocean Engineering, vol. 253, 2022, doi: 10.1016/j.oceaneng.2022.111339.
[11] H. Shi, J.-H. Wang, H.-C. Liu, and S.-M. Wu, “New SLIM Method for Human Reliability Analysis Based on Consensus Analysis and Combination Weighting,” IEEE Transactions on Automation Science and Engineering, vol. 22, pp. 631–642, 2025, doi: 10.1109/TASE.2024.3392742.
[12] F. A. A. FAA, “Summary of the FAA’s Review of the Boeing 737 MAX,” 2020.
[13] A. Tampubolon, I. Lalu, G. Juangsa, and S. T. Si, “Studi Kasus The Failure of The MCAS ( Maneuvering Characteristic Augmentation System ) pada pesawat,” 2024.
[14] N. N. H. Tananta and A. R. Ramadhani, “Human Reliability Assessment (HRA) of Fire and Explosion Cases at Fuel Filling Stations (SPBU),” MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, vol. 6, no. 1, pp. 13–24, Jan. 2024, doi: 10.46574/motivection.v6i1.285.
[15] B. Navas de Maya, A. Komianos, B. Wood, L. de Wolff, R. E. Kurt, and O. Turan, “A practical application of the Hierarchical Task Analysis (HTA) and Human Error Assessment and Reduction Technique (HEART) to identify the major errors with mitigating actions taken after fire detection onboard passenger vessels,” Ocean Engineering, vol. 253, p. 111339, Jun. 2022, doi: 10.1016/j.oceaneng.2022.111339.
[16] N. Hyatt, Incident Investigation and Accident Prevention in the Process and Allied Industries. CRC Press, 2006. doi: 10.1201/9781315217901.
[17] G. Kayisoglu, P. Bolat, and K. Tam, “Evaluating SLIM-based human error probability for ECDIS cybersecurity in maritime,” Journal of Navigation, vol. 75, no. 6, pp. 1364–1388, Nov. 2022, doi: 10.1017/S0373463322000534.
[18] J. Sharit, “Human Reliability Modeling,” 1993, pp. 369–410. doi: 10.1016/B978-0-444-81660-3.50019-8.
[19] Engr. M. T. Mathew and Z. M. Ismail, “Role of AOA Sensor and MCAS Activation in Boeing Max 8 Flights – A Case Study of Lion Air JT610 and Ethiopian Airlines ET302,” IARJSET, vol. 6, no. 5, 2019, doi: 10.17148/iarjset.2019.6525.
[20] J. C. Williams and J. L. Bell, “Consolidation of the Error Producing Conditions Used in the Human Error Assessment and Reduction Technique (Heart),” Safety and Reliability, vol. 35, no. 3, pp. 26–76, Dec. 2015, doi: 10.1080/09617353.2015.11691047.
[21] Y. Xue and G. Fu, “A modified accident analysis and investigation model for the general aviation industry: emphasizing on human and organizational factors,” Journal of Safety Research, vol. 67, 2018, doi: 10.1016/j.jsr.2018.09.008.
[22] T. D. Riyanti, W. Tambunan, and W. Sukmono, “Analisis Human Reliability Assessment (HRA) dengan Metode HEART dan SPAR-H (Studi Kasus PT.X),” JIME (Journal of Industrial and, vol. 5, no. 1, pp. 41–48, 2018.