Analysis of the Effect of Temperature Differences on Surface Hardness and FeB Diffusion Process on DIN 34CrNiMo6 Steel Material Through the Boriding Process

##plugins.themes.academic_pro.article.main##

Umen Rumendi
Achmad Muhammad
Damarendro Hutomo Putro

Abstract

The availability of materials that meet production needs is sometimes not easy to obtain. Material properties must meet the standards are physical properties, including violence. One method is to increase the value of the surface hardness of the material by the boriding process.  Boriding is a surface hardening process through the process of diffusion of the substrate, thereby causing the material hardness to increase.  The results showed the temperature in the boriding process of DIN 34CrNiMo6 material was proven to affect the surface hardness of the material.  The FeB diffusion process begins to form at temperatures of 850°C and 950°C.  The optimal temperature for the boriding process is at a temperature of 950°C.


Ketersediaan material yang memenuhi kebutuhan produksi terkadang tidak mudah untuk didapatkan. Sifat material harus memenuhi standar adalah sifat fisik material, diantaranya adalah kekerasan. Salah satu metode untuk meningkatkan nilai kekerasan permukaan material dengan proses boriding. Boriding merupakan suatu proses surface hardening melalui proses difusi terhadap substrat sehingga menyebabkan nilai kekerasan material tersebut mengalami kenaikan. Hasil penelitian menunjukkan temperatur pada proses boriding terhadap material DIN 34CrNiMo6 terbukti dapat mempengaruhi kekerasan permukaan material.  Proses difusi FeB mulai terbentuk pada temperatur 850°C dan 950°C.  Temperatur optimal untuk proses boriding adalah pada  temperatur 950°C  

##plugins.themes.academic_pro.article.details##

How to Cite
Rumendi, U., Muhammad, A., & Putro, D. (2020). Analysis of the Effect of Temperature Differences on Surface Hardness and FeB Diffusion Process on DIN 34CrNiMo6 Steel Material Through the Boriding Process. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 2(3), 31-42. https://doi.org/10.46574/motivection.v2i3.67

References

[1] Bringas, J. E. (2002). Handbook of comparative world steel standards. ASTM.
[2] Callister Jr. W.D. (2007). Materials Science and Engineering An Introduction, Seventh Edition.
[3] Joshi, A.A. and S.S. Hosmani. (2014). Pack-Boronizing of AISI 4140 Steel : Boronizing Mechanism and the Role of Container Design, Material and Manufacturing Process, vol. 29 pp 1062-1073.
[4] Krauss, George. (1997). Principle of Heat Treatment. Amerika. American Society for Metals.
[5] Metallurgical Articles, http://surface-heat.com/boronizing, diakses 12 Agustus 2019.
[6] Sandi, Putra. (2004). Powder Nitriding pada Baja Karbon Rendah dengan Menggunakan Urea. Skripsi Program Sarjana Teknik Material ITB Bandung: tidak diterbitkan.
[7] Scheneider, M.J. and M.S. Chatterjee. (2013). “Introduction to Surface Hardening of Steels”, ASM International, vol. 4A.
[8] Scott, Benjamin. (2015). Abrasion Resistance of Concrete – Design, Construction and Case Study [Online], Vol 6 (3), 13 halaman. Tersedia : https://www.researchgate.net/ publication/281594259_Abrasion_Resistance_of_Concrete__Design_Construction_and_Case_Study [16 Mei 2019]
[9] Setiawan A.B, & W. Purwadi (2009). Pengaruh Temperatur Dan Waktu Proses Nitridasi Terhadap Kekerasan Permukaan FCD 700 Dengan Media Nitridasi Urea. Seminar Nasional Kluster Riset Teknik Mesin.
[10] Sugondo. (2005). “Aplikasi Teknologi Nano pada Pelapisan Paduan Baja Corten dengan Boron Karbida”, 6th National Seminar on Microscopy and Microanalysis, Bogor
[11] Sugondo, R. Langenati, Widjaksana & B.A. Pudjanto. (2006). “Pelapisan Baja Tipe ST37 Dengan Nano Powder Pack Boron Karbida”, Jurnal Teknik Bahan Nuklir, vol 2 no.2 pp, 56-115, Juni-2006.
[12] Suratman, R. (1994). Panduan Proses Perlakuan Panas. Bandung : Lembaga Penelitian Institut Teknologi Bandung.