Prototype of Coffee Drink Viscosity Measuring Tool Using LDR Sensor Base on Arduino

##plugins.themes.academic_pro.article.main##

Muhammad Reza
Muhammad Daud
* Corresponding author: mdaud@unimal.ac.id
Nanda Sitti Nurfebruary
Ainal Mardhiah

Abstract

Coffee is one of the leading plantation commodities which has a significant contribution to the Indonesian economy. Getting the perfect coffee taste is influenced by several factors. One of these factors is the level of viscosity of the coffee drink. To measure the viscosity level of a coffee drink, you need a tool to measure the viscosity level. So in this research, a device for detecting the viscosity of coffee drinks was designed using an Arduino and a light dependent resistor (LDR) sensor. The LDR sensor is capable of showing a precision level of 92.58% in measuring light intensity. The test was carried out in three stages, namely on coffee without sugar to find the limits of thick, thin and very thin. The test results show that if the average viscosity value is above 30.7 NTU, the coffee drink is categorized as thick, the average viscosity value of 21.1 to 30.7 NTU is categorized as thin and the average viscosity value below 21.1 NTU is categorized as very runny.


Kopi merupakan salah satu komoditas unggulan perkebunan yang mempunyai kontribusi yang cukup nyata dalam perekonomian Indonesia. Untuk mendapatkan cita rasa kopi yang sempurna dipengaruhi oleh beberapa faktor. Salah satu faktor tersebut adalah tingkat kekentalan dari minuman kopi. Untuk mengukur tingkat kekentalan minuman kopi maka dibutuhkan sebuah alat pengukur tingkat kekentalan tersebut. Maka pada penelitian ini dilakukan dirancang alat pendeteksi kekentalan minuman kopi menggunakan Arduino dan sensor light dependent resistor (LDR). Sensor LDR mampu menunjukkan tingkat presisi sebesar 92,58% dalam pengukuran intensitas cahaya. Pengujian dilakukan dengan tiga tahapan yaitu pada kopi tanpa gula untuk mencari batas kental, encer, sangat encer. Hasil pengujian menunjukkan bahwa nilai rata-rata kekentalan di atas 30,7 NTU maka minuman kopi dikategorikan kental, nilai rata-rata kekentalan 21,1 sampai 30,7 NTU dikategorikan encer dan nilai rata-rata kekentalan di bawah 21,1 NTU dikategorikan sangat encer.

##plugins.themes.academic_pro.article.details##

How to Cite
Reza, M., Daud, M., Nurfebruary, N., & Mardhiah, A. (2024). Prototype of Coffee Drink Viscosity Measuring Tool Using LDR Sensor Base on Arduino. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 6(3), 293-300. https://doi.org/10.46574/motivection.v6i3.321

References

[1] R. L. Baso and R. Anindhita, “Analisis Daya Saing Kopi Indonesia,” J. Ekon. Pertan. dan Agribisnis, vol. 2, no. 1, pp. 1–9, 2018.
[2] L.-M. Caracostea, R. Sîrbu, and F. Buşuricu, “Determination of Caffeine Content in Arabica and Robusta Green Coffee of Indian Origin,” Eur. J. Nat. Sci. Med., vol. 4, no. 1, pp. 67–77, 2021, doi: 10.26417/425qba31z.
[3] R. Syah Putra, “Kopi dan Warung Kopi di Meulaboh dalam Lintas Sejarah dan Budaya,” in De Atjehers (Dari Serambi Mekkah ke Serambi Kopi), S. Akmal and M. Al Fairusy, Eds. 2018, pp. 22–42.
[4] S. Trisaputra, “Identifikasi Karakteristik Fisik Biji Kopi pada Tiga Jenis Kopi Arabika Spesialti: Gayo, Kintamani dan Wamena,” Skripsi Progr. Sarj. Teknol. Pertan. Univ. Lampung, 2018.
[5] A. H. Bakriansyah, M. Daud, T. Taufiq, and A. Asran, “Prototype of Automatic Monitoring and Control System for Water Supply, Acidity, and Nutrition in Internet of Things Based DFT Hydroponics,” Motiv. J. Mech. Electr. Ind. Eng., vol. 5, no. 2, pp. 339–350, 2023, doi: 10.46574/motivection.v5i2.235.
[6] B. Eko Cahyono et al., “Karakterisasi Sensor LDR dan Aplikasinya pada Alat Ukur Tingkat Kekeruhan Air Berbasis Arduino UNO (Characterization of the LDR Sensor and Its Application in an Arduino UNO-Based Water Turbidity Meter),” J. Teor. dan Apl. Fis., vol. 7, no. 2, pp. 179–186, 2019.
[7] W. Setya et al., “Design and development of measurement of measuring light resistance using Light Dependent Resistance (LDR) sensors,” J. Phys. Conf. Ser., vol. 1402, no. 4, pp. 1–5, 2019, doi: 10.1088/1742-6596/1402/4/044102.
[8] M. A. Fahril, N. A. Rangkuti, and I. R. Nila, “Pengujian Alat Pendeteksi Tingkat Kekeruhan Air Berbasis Mikrokontroller Atmega 8535 Sebagai Sensor Turbidity,” Hadron J. Fis. dan Terap., vol. 4, no. 1, pp. 13–19, 2022.
[9] K. R. Mustafa, R. M. Mustafa, and R. M. Ramadani, “Measuring the Voltage, Current and Resistance of the LDR Sensor through the Arduino UNO,” Asian J. Res. Comput. Sci., vol. 16, no. 4, pp. 211–222, 2023, doi: 10.9734/ajrcos/2023/v16i4383.
[10] B. D. Waluyo, S. Bintang, and S. Januariyansah, “The Effect of Using Proteus Software as A Virtual Laboratory on Student Learning Outcomes,” Paedagoria J. Kajian, Penelit. dan Pengemb. Kependidikan, vol. 12, no. 1, pp. 140–145, 2021.
[11] Y. Song and Y. Jing, “Application prospect of cad-sketchup-ps integrated software technology in landscape planning and design,” Comput. Aided. Des. Appl., vol. 18, no. S3, pp. 153–163, 2021, doi: 10.14733/cadaps.2021.S3.153-163.
[12] R. H. Sudhan, M. G. Kumar, A. U. Prakash, S. A. R. Devi, and S. P., “Arduino Atmega-328 Microcontroller,” Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng., vol. 3, no. 4, pp. 27–29, 2015, doi: 10.17148/ijireeice.2015.3406.
[13] D. Desmira, “Aplikasi Sensor LDR (Light Dependent Resistor) untuk Efisiensi Energi pada Lampu Penerangan Jalan Umum,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 9, no. 1, pp. 21–29, 2022, doi: 10.30656/prosisko.v9i1.4465.
[14] S. Samsugi, Z. Mardiyansyah, and A. Nurkholis, “Sistem Pengontrol Irigasi Otomatis Menggunakan Mikrokontroler Arduino Uno,” J. Teknol. dan Sist. Tertanam, vol. 1, no. 1, p. 17, 2020, doi: 10.33365/jtst.v1i1.719.
[15] Y. Rahmanto, A. Rifaini, S. Samsugi, and S. D. Riskiono, “Sistem Monitoring pH Air pada Aquaponik Menggunakan Mikrokontroler Arduino Uno,” J. Teknol. dan Sist. Tertanam, vol. 1, no. 1, pp. 23–28, 2020, doi: 10.33365/jtst.v1i1.711.