Analysis of Power Swing Impact on Distance Relay Performance in a 500 kV Transmission System Based on Real-Time Digital Simulator Model

##plugins.themes.academic_pro.article.main##

Muhammad Adityo Wiryawan
* Corresponding author: adityowiryawan@students.unnes.ac.id
Riana Defi Mahaji Puteri

Abstract

Distance relays in high-voltage transmission systems detect faults by measuring impedance; however, fluctuations caused by power swings can mimic fault patterns and trigger false trips. This paper analyzes the impact of power swings on the performance of distance relays in a 500 kV transmission system using Real-Time Digital Simulator (RTDS) simulations. The results indicate that power swings cause 267 to 299 false trip signals before the actual fault occurs in the observed system. Recommendations include the development of protection algorithms such as Power Swing Blocking (PSB) and artificial intelligence (AI) technologies, including Wavelet Transform, Support Vector Machine (SVM), Chaos Theory, Prony Analysis, as well as hybrid combinations such as Wavelet-Chaos Theory and Adaptive Neuro-Fuzzy Inference System (ANFIS), to detect fault patterns in real-time. Although this study focuses on a 500 kV HVAC system, the findings can be generalized to other nominal voltage systems utilizing HVAC technology. However, further research is required for applications in HVDC-based systems.


Distance relay pada sistem transmisi tegangan tinggi mendeteksi gangguan dengan mengukur impedansi, tetapi fluktuasi akibat power swing dapat menyerupai pola gangguan dan memicu kesalahan trip. Artikel ini menganalisis pengaruh power swing pada performa distance relay di sistem transmisi 500 kV menggunakan simulasi Real-Time Digital Simulator (RTDS). Hasil menunjukkan power swing menyebabkan kesalahan trip sebanyak 267 hingga 299 sinyal sebelum gangguan aktual terjadi pada sistem yang diamati. Rekomendasi mencakup pengembangan algoritma proteksi seperti Power Swing Blocking (PSB) dan teknologi kecerdasan buatan (AI), termasuk Wavelet Transform, Support Vector Machine (SVM), Chaos Theory, Prony Analysis, serta kombinasi hybrid seperti Wavelet-Chaos Theory dan Adaptive Neuro-Fuzzy Inference System (ANFIS), untuk mendeteksi pola gangguan secara real-time. Meskipun penelitian ini difokuskan pada sistem HVAC 500 kV, hasilnya dapat digeneralisasi untuk sistem tegangan nominal lainnya selama menggunakan teknologi HVAC. Namun, penelitian lebih lanjut diperlukan untuk aplikasi pada sistem berbasis HVDC.

##plugins.themes.academic_pro.article.details##

How to Cite
Wiryawan, M., & Puteri, R. (2024). Analysis of Power Swing Impact on Distance Relay Performance in a 500 kV Transmission System Based on Real-Time Digital Simulator Model. MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering, 6(3), 355-372. Retrieved from https://motivection.imeirs.org/index.php/motivection/article/view/395

References

[1] A. G. Ter-Gazarian, Energy Storage for Power Systems. in Energy Engineering. Institution of Engineering and Technology, 2020. [Online]. Available: https://books.google.co.id/books?id=38_gDwAAQBAJ
[2] G. M. Baleboina and M. Rudramoorthy, “Stability analysis of power system under n-1 contingency condition,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 4, pp. 2940–2950, 2024.
[3] S. Seghir and T. Bouthiba, “Impedance correction method of distance relay on high voltage transmission line,” Przegląd Elektrotechniczny, vol. 97, 2021.
[4] J. L. Kirtley, Electric power principles: sources, conversion, distribution and use. John Wiley & Sons, 2020.
[5] J. de J. Jaramillo Serna and J. M. López-Lezama, “Calculation of distance protection settings in mutually coupled transmission lines: A comparative analysis,” Energies (Basel), vol. 12, no. 7, p. 1290, 2019.
[6] Z. Melhem, “Electricity transmission, distribution and storage systems,” 2013.
[7] S. A. Hosseini, B. Taheri, H. A. Abyaneh, and F. Razavi, “Comprehensive power swing detection by current signal modeling and prediction using the GMDH method,” Protection and Control of Modern Power Systems, vol. 6, no. 2, pp. 1–11, 2021.
[8] J. Desai and V. Makwana, “Power swing blocking algorithm based on real and reactive power transient stability,” Electric Power Components and Systems, vol. 48, no. 16–17, pp. 1673–1683, 2021.
[9] R. M. Azmi, O. Penangsang, N. K. Aryani, and G. Manuella, “Power Swing Phenomenon on Jawa Bali 500 kV and Its Mitigation,” in 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), IEEE, 2019, pp. 189–194.
[10] V. Ashok, A. Yadav, C. C. Anthony, K. K. Yadav, and U. Yadav, “A reliable decision-making algorithm for fault during power swing in 400 kV double-circuit transmission line: a case study of Chhattisgarh state power system network,” in Decision making applications in modern power systems, Elsevier, 2020, pp. 473–506.
[11] B. Ram, Power system protection and switchgear. Tata McGraw Hill, 2022.
[12] A. Alassi, S. Bañales, O. Ellabban, G. Adam, and C. MacIver, “HVDC transmission: Technology review, market trends and future outlook,” Renewable and Sustainable Energy Reviews, vol. 112, pp. 530–554, 2019.
[13] A. Von Meier, Electric power systems: a conceptual introduction. John Wiley & Sons, 2024.
[14] PT PLN (Persero), “Pola Proteksi Saluran Transmisi (SPLN T5.002:2021),” 2021, PT PLN (Persero), Jakarta Selatan.
[15] Kementerian Energi Dan Sumber Daya Mineral Republik Indonesia, “Peraturan Menteri Energi Dan Sumber Daya Mineral Republik Indonesia Nomor 20 Tahun 2020 Tentang Aturan Jaringan Sistem Tenaga Listrik (Grid Code),” 2020.
[16] M. A. Bhaskar and A. Indhirani, “Impact of FACTS devices on distance protection in transmission system,” in 2014 IEEE National Conference on Emerging Trends in New & Renewable Energy Sources and Energy Management (NCET NRES EM), IEEE, 2014, pp. 52–58.
[17] Y. Liang, Z. Lu, W. Li, W. Zha, and Y. Huo, “A novel fault impedance calculation method for distance protection against fault resistance,” IEEE Transactions on Power Delivery, vol. 35, no. 1, pp. 396–407, 2019.
[18] R. Muminović and A. Muminović, “Power Swing: Detection and Prevention,” B&H Electrical Engineering, vol. 17, no. 2, pp. 32–41, 2023.
[19] A. Jalilian and D. A. Robinson, “Impact of inverter-based resources on transmission line relaying-part ii: Power swing protection,” Frontiers in Electronics, vol. 4, p. 1144383, 2023.
[20] P. K. Nayak, J. G. Rao, P. Kundu, A. K. Pradhan, and P. Bajpai, “A comparative assessment of power swing detection techniques,” in 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, IEEE, 2010, pp. 1–4.
[21] N. Yusoff, A. F. Abidin, and M. E. Mahadan, “The impact of power swing to the operation of distance relay,” in 2015 5th IEEE International Conference on System Engineering and Technology (ICSET), IEEE, 2015, pp. 39–42.
[22] Z. Y. Xu et al., “A distance protection relay for a 1000-kV UHV transmission line,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1795–1804, 2008.
[23] J. T. Rao and B. R. Bhalja, “Prevention of Malfunctioning of Distance Relay during Symmetrical and Asymmetrical Power Swing,” in 2021 IEEE Power & Energy Society General Meeting (PESGM), IEEE, 2021, pp. 1–5.
[24] A. Zeno, J. R. Orillaza, and M. L. Kolhe, “Analytical modelling of power swing and validation using real time digital simulator,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, p. 012010.
[25] P. D. Talbot et al., “Real-time simulation of critical evolving fault condition on a 500 kV transmission network for testing of high performance protection relays,” in 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077), IEEE, 2000, pp. 1923–1927.
[26] M. Ayache, B. BOUSAADIA, and H. BENTARZI, “A New Model of Numerical MHO Distance Relay Associated with Power Swing Detector,” Algerian Journal of Signals and Systems, vol. 1, no. 2, pp. 121–128, 2016.